EL ESTADO GASEOSO. Algunas características importantes de los gases son: la expansibilidad, capacidad de difusión, baja densidad y altas presiones.


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "EL ESTADO GASEOSO. Algunas características importantes de los gases son: la expansibilidad, capacidad de difusión, baja densidad y altas presiones."

Transcripción

1 EL ESTADO GASEOSO El aire está compuesto, principalmente, de los elementos oxígeno y nitrógeno. Otros elementos no metálicos existen en la naturaleza como gases en condiciones ordinarias como hidrógeno (H 2 ), flúor (F 2 ), cloro (Cl 2 ) y los gases nobles del grupo VIII A de la tabla periódica, helio (He), neón (Ne), argón (Ar), kriptón (Kr), xenón (Xe) y radón (Rd). Algunos ejemplos de compuestos moleculares gaseosos, en condiciones ambientales, son el cianuro de hidrógeno ó ácido cianhídrico (veneno mortal), HCN; el cloruro de hidrógeno ó ácido clorhídrico, HCl; el sulfuro de hidrógeno ó ácido sulfiídrico, H 2 S; el monóxido de carbono (tóxico respiratorio), CO; el bióxido de carbono (gas arterial importante), CO 2 ; metano o gas de los pantanos, CH 4 ; oxido nitroso, N 2 O, oxido nítrico, NO 2, amoníaco, NH 3 y los óxidos de azufre, SO 2 y SO 3. Estos gases están formados por elementos no metálicos, con fórmulas moleculares sencillas y, por consiguiente, bajos pesos moleculares. Propiedades de los gases Algunas características importantes de los gases son: la expansibilidad, capacidad de difusión, baja densidad y altas presiones. Los gases, debido a su expansibilidad, no tienen forma ni volumen definido y llenan completamente el recipiente que los contiene. Un aumento de temperatura aumenta la energía cinética de las partículas y favorece una mayor separación entre ellas provocando una expansión cuando la presión se mantiene constante. Las partículas gaseosas se caracterizan por su gran tendencia a moverse de una zona de mayor densidad a otra de menor densidad, conocida como fuerza de difusión. Al destapar un frasco que contenga amoníaco, el olor se siente en todo el laboratorio porque se difunde por todo el salón hasta alcanzar una densidad media de equilibrio. La densidad de los gases es más baja que la de los líquidos y sólidos. Al estar más

2 separadas las partículas gaseosas, la misma masa ocupa un mayor volumen y, por lo tanto, disminuye la densidad. La presión de un gas es la fuerza que las moléculas ejercen sobre las paredes del recipiente que lo contiene dividida por su área superficial. Se entiende que el estado de una cantidad de gas se determina por las variables presión, volumen y temperatura. Comportamiento de los gases En el estado gaseoso, la materia se caracteriza por un contenido energético mayor que en los estados liquido y sólido, lo que explica las diferencias en sus características. Según el gas y sus condiciones de temperatura y presión, se describen dos tipos de comportamiento conocidos como ideal y real. Teoría de los gases ideales La Teoría de los gases ideales es un conjunto de proposiciones que definen las condiciones requeridas para que un gas sea considerado como tal. Un resumen de dicha teoría es el siguiente: "Los gases están compuestos de diminutas partículas de igual masa y tamaño en un mismo gas, pero diferentes para gases distintos, que se mueven continuamente a grandes velocidades, con choques elásticos (sin pérdida de energía por efecto de la fricción) entre ellas y con las paredes del recipiente, ejerciendo una presión sobre el recipiente donde están contenidos. Esta gran energía cinética que caracteriza a las partículas de un gas depende principalmente de la temperatura en una variación proporcional. A presiones bajas la distancia entre las partículas es grande, comparada con sus diámetros, por tanto las fuerzas de atracción son despreciables, y como las partículas son pequeñas en comparación con las distancias entre ellas su volumen con relación al volumen total resulta despreciable". Leyes del Comportamiento de los Gases Estas leyes son las tres relaciones existentes entre el volumen, la temperatura y la presión de un gas y se conocen como las Leyes de Boyle-Mariotte, Charles y Gay- Lussac 33

3 Ley de Boyle - Mariotte. (Relación Presión - Volumen) La ley de Boyle-Mariotte expresa que: "El volumen de un gas, a temperatura constante, es inversamente proporcional a la presión". Por lo tanto, si K es una constante de proporcionalidad K V = ó PV = K P Ley de Charles. (Relación Temperatura - Volumen) La ley de Charles expresa que: "El volumen de un gas, a presión constante, es directamente proporcional a su temperatura absoluta". Por lo tanto, si K es una constante de proporcionalidad V K ó V KT T = = Ley de Gay - Lussac. (Relación Presión - Temperatura) La ley de Gay-Lussac expresa que: "La presión de un gas, a volumen constante, es directamente proporcional a su temperatura absoluta". Por lo tanto, si K es una constante de proporcionalidad P K ó P KT T = = Ley de Avogadro La ley de Avogadro expresa que: "Volúmenes iguales de gases a la misma temperatura y presión contienen igual cantidad de moléculas". 34

4 Volumen molar de un gas De la ley de Avogadro de deduce que a condiciones normales, (1 atmósfera de presión y 0 C) el volumen de un mol de gas es 22.4 litros, es decir, 23 1 mol de gas = moleculas degas = 22.4 litros = Peso mol por lo tanto, "el volumen de un gas a temperatura y presión constantes es directamente proporcional al número de moles", n, es decir, V = Kn. Ecuación de estado de los gases ideales Las proporcionalidades expresadas mediante las leyes de Boyle, Charles, Gay Lussac y nt Principio de Avogadro, reunidas en una sola corresponde a Vα P Al introducir la constante de proporcionalidad, R, se transforma en la denominada Ecuación de los Gases Ideales. PV = nrt siendo T, la temperatura absoluta en K, P, la presión en atmósferas, V el volumen en litros, n el número de moles y R, es la denominada constante universal de los gases cuyo valor depende de las unidades utilizadas. Algunos valores de la constante universal de los gases son: latm mol K cal Kmol 3 atm pie R lbmol Btu R lbmol 3 psi pie R lbmol Jul Kmol Densidad de los gases ideales A partir de la ecuación de estado de los gases ideales se puede demostrar que la 35

5 densidad de un gas, ρ, depende de sus condiciones de temperatura y presión. La ecuación para calcular la densidad de un gas ideal es: ρ = MP RT siendo M, el peso molecular del gas. La ecuación muestra que la densidad de un gas es directamente proporcional a la presión e inversamente proporcional a la temperatura absoluta. Peso molecular de un gas ideal La ecuación para calcular la densidad de un gas ideal ha permitido utilizarla para estimar el peso molecular de un gas ideal desconocido. Al medir la masa de un gas contenida en un recipiente de volumen conocido, es decir, determinando su densidad y midiendo la presión y la temperatura la ecuación hace posible un cálculo del peso molecular del gas. Ecuaciones del comportamiento de un gas para un cambio de estado Cuando un gas a unas condiciones iniciales o estado 1, es sometido a una modificación en algunas de sus condiciones, se dice que cambia a un estado final o estado 2. La ecuación de estado para una cantidad de gas, escrita entre dos estados, permite plantear una relación entre temperatura, presión y volumen conocida como la ecuación combinada de los gases. PV T PV = = K T Si en la ecuación combinada una de las variables se mantiene constante, resulta una ecuación simplificada que corresponde a cada una de las proporcionalidades expresadas entre presión, volumen y temperatura, de la siguiente forma: Si T 1 = T 2 P 1 V 1 = P 2 V 2 Ley de Boyle 36

6 V1 V2 Si P 1 = P 2 = Ley de Charles T T 1 2 P1 P2 Si V 1 = V 2 = Ley de Gay Lussac T T 1 2 Gases reales Cuando un gas no satisface las consideraciones planteadas en la teoría cinética de los gases ideales se considera como un gas real. Altas condiciones de presión y temperatura ocasionan que gases de ciertos tamaños de partículas muestren un comportamiento que se desvía del considerado ideal. Para el comportamiento de un gas real existe un número de grande de ecuaciones, de naturaleza empírica o semiempírica, que relacionan sus condiciones de estado. Una muy conocida, por ser de las primeras planteadas, es la denominada, Ecuación de Van der Waals 2 an P+ 2 ( Vn b) = nrt V que se conoce como una ecuación de dos constantes a y b Esta ecuación es de aplicación limitada tanto en el número de gases posible como en el intervalo de condiciones. Esto ha originado que permanentemente se propongan ecuaciones modificadas que se diferencian en el número de constantes, el conjunto de compuestos y el intervalo de condiciones aplicables y la precisión o confiabilidad de sus resultados con respecto a la realidad del comportamiento del gas. Otra de las ecuaciones muy utilizadas es la de Peng-Robinson (PR), que incluye dos constantes, produce resultados muy satisfactorios y su forma es RT a P = V b V ( V + b ) + b ( V b ) 37

7 Las ecuaciones de estado aplicables a gases reales se conocen por el nombre de sus autores como la de Soave-Redlich-Kwong (SRK), la de Benedict-Web-Rubbin (BWR), y la ecuación virial Mezclas de gases Las leyes del comportamiento del estado gaseoso son aplicables tanto a gases simples como a mezclas de gases. Sin embargo, existen leyes que establecen relaciones entre algunas condiciones cuando se trata de una mezcla gaseosa que son las de Dalton y Amagat Ley de Dalton o Ley de las presiones parciales. La ley de Dalton expresa que: "A temperatura constante, la presión total ejercida por una mezcla de gases en un volumen definido, es igual a la suma de las presiones que cada uno de los gases podría ejercer si estuviera solo". P T = P 1 + P 2 + P 3 siendo P 1, P 2, P 3,, las presiones parciales de cada uno de los gases que componen la mezcla y PT, la presión total de la mezcla Se entiende como presión parcial la que ejerce un gas, individualmente, a la misma temperatura y volumen de la mezcla. Fracción molar de un componente en una mezcla La composición de una mezcla gaseosa se describe en términos de las fracciones molares de cada uno de los gases existentes en la mezcla. Por ejemplo, si el 78% de las moléculas presentes en el aire son de Nitrógeno y el 21 % son de Oxígeno, se entiende que la fracción de moléculas de nitrógeno en el aire es 0,78 y la del oxígeno es Como el número de moles es proporcional al número de moléculas, la fracción molar, x 1, de cualquier componente de la mezcla es sencillamente la relación de moles de ese componente entre el total de moles de la mezcla, es decir, 38

8 n1 x1 = n T Al relacionar las ecuaciones de estado de uno de los gases de la mezcla y la ecuación de estado para la mezcla se obtiene una ecuación que es considerada como otra forma de expresar La Ley de Dalton, es decir: P 1 = x 1 P T o "La presión parcial de un gas en una mezcla es igual al producto de su fracción molar multiplicada por la presión total de la mezcla" Ley de Amagat o Ley de los volúmenes parciales. La ley de Amagat expresa que: "En una mezcla cualquiera de gases, el volumen total es igual a la suma de los volúmenes parciales de los constituyentes de la mezcla". Por volumen parcial de un gas se entiende el que ocuparía un gas si estuviese solo a una temperatura dada y a la presión total de la mezcla. V T = V 1 + V 2 + V 3 Mediante un razonamiento similar al seguido con la Ley de Dalton, se puede demostrar otra expresión matemática correspondiente a la Ley de Amagat, que es: V 1 = x 1 V T o "El volumen parcial de un gas en una mezcla es igual al producto de su fracción molar multiplicada por el volumen total de la mezcla" Se deduce de las leyes de Dalton y Amagat que el concepto de fracción molar, para una mezcla de gases es exactamente igual a la fracción de presiones o a la fracción de volúmenes. 39

9 Difusión de gases Una característica importante de los gases es su gran capacidad de difusión, es decir, de desplazarse a través de un medio material. La velocidad de difusión de un gas depende de un conjunto de factores como la diferencia de presiones o concentraciones, la temperatura y el peso molecular del gas, entre otras. En igualdad de condiciones, Graham estudió la difusión entre dos gases y estableció una relación entre sus velocidades de difusión y sus densidades o pesos moleculares. Ley de Graham La ley de Graham expresa que: A temperatura y presión constantes, las velocidades de difusión de diferentes gases varía inversamente proporcional con la raíz cuadrada de sus densidades o masas moleculares" v v = ρ ρ siendo v 1 y v 2 las velocidades de difusión y ρ 1 y ρ 2 las densidades de los gases. A la misma temperatura y presión, la relación de densidades es exactamente igual a la relaciones de pesos moleculares, por lo tanto, se puede escribir que: v v = M M siendo M 1 y M 2 las masas moleculares de los gases. 40

10 Ejercicios Resueltos Ejercicio l. El volumen de un gas a 20 C y 1 atmósfera de presión es de 150 litros. Qué volumen ocupará a 50 C y 730 mm de Hg de presión? Aplicando la ecuación combinada de los gases para hallar el volumen del estado 2, tenemos que P 1 T 2 V2 = V1 P 2 T 1 reemplazando V 1 = 150 litros, P 1 = 760 mm de Hg, T 1 = 293 K, P 2 = 730 mm de Hg y T 2 = 323K en la anterior ecuación resulta que 760mmHg 323K V2 = 150litros = litros 730mmHg 293K Ejercicio 2. Cinco gramos de un gas ocupan un volumen de 2 litros a 20 C y 0.5 atmósferas de presión. Cuál es su volumen en condiciones normales, suponiendo que se comporta idealmente. Para un gas las condiciones normales son 0 C y 1 atmósfera de presión que corresponden a las condiciones del estado 2, de tal manera que conocidas las condiciones del estado 1, la pregunta del ejercicio es el volumen de los cinco gramos del gas, es decir V 2. Al aplicar la ecuación combinada se obtiene que 0.5atm 273K V2 = 2litros = 0.93litros 1atm 293K Ejercicio 3. Qué volumen ocuparán 22.5 g de CH 4 a 27 C y 800 mm de Hg de presión, considerando que es un gas ideal? Al conocer la masa, la temperatura y la presión del gas, se puede calcular el volumen 41

11 del gas ideal aplicando la ecuación de estado de los gases ideales, conociendo además que el peso mól del metano es 16 gramos V latm ( 300K ) nrt 22.5 g de CH mol K 4 = = = 32.86litros P 16 g de CH 4 / mol de CH4 800mmHg 760 mmhg /1atm Ejercicio 4. Calcular la densidad del SO 2 a 40 C y 750 mm de Hg, considerando que es un gas ideal. El peso mol del SO 2 es 64 gramos. Aplicando la fórmula para calcular la densidad de un gas ideal y reemplazando los datos del ejercicio 750 ( 64 g / mol) atm MP 760 ρ = = = 2.46 g / litro RT latm ( 313K ) mol K Ejercicio 5. Calcular el número de gramos de H 2 S gaseoso puro contenido en una botella cilíndrica de 30 litros, a 20 C y una presión de 1.5 atm. A partir de la ecuación de estado de los gases ideales, se puede hallar las moles de un gas conociendo las condiciones del gas y si además se conoce su peso mol que para el sulfuro de hidrógeno es 34 gramos, entonces se puede hallar la masa correspondiente de la siguiente manera PV (1.5 atm)(30 litros) n = = = 1.87moles de H2S RT latm ( 293K ) mol K m = nm = (1.87 mol de H 2 S)(34 g de H 2 S / mol de H 2 S) = g de H 2 S 42

12 Ejercicio 6. Para respirar un paciente, se mezclan 11 moles nitrógeno, 8 moles de oxígeno y 1 mol de anhídrido carbónico. Calcule la presión parcial de cada uno de los gases en la mezcla si la presión total se hace de 760 mm de Hg. Para aplicar La Ley de Dalton se calculan las correspondientes fracciones molares Fracción molar del nitrógeno = 11 moles de nitrógeno 20 moles de mezcla = moles de mezcla Fracción molar de oxígeno = 8 moles de oxigeno 20 moles de mezcla = 0.4 Fracción molar de anhídrido carbónico = 1 mol de anhidro carbónico 20 moles de mezcla = 0.05 Las presiones parciales son: Presión Parcial del nitrógeno: P N = X N P T = (0.55)(760 mm de Hg) = 418 mm de Hg Presión Parcial del oxígeno P O = X O P T = (0.4)(760 mm de Hg) = 304 mm de Hg Presión Parcial del anhídrido P A = X A P T = (0.05)(760 mm de Hg) = 38 mm de Hg Ejercicio 7. Un litro de oxígeno contenido en un recipiente ejerce una presión de 60 mm de Hg y un litro de hidrógeno contenido en otro recipiente ejerce una presión de 30 mm de Hg, a la misma temperatura anterior. (a) Cuál es la presión total si se mezclan en un recipiente con un volumen total de un litro?, (b) Cuál es el porcentaje en volumen del oxígeno? Aplicando la Ley de Dalton (a) Presión total: P T = P O + P H = 60 mm de Hg + 30 mm de Hg = 90 mm de Hg 43

13 (b) % en volumen de oxígeno: X O = PO 60mmHg % P = 90mmHg = = T Ejercicio 8. Calcular la composición de un aire atmosférico conociendo su composición de la siguiente manera: presión parcial de oxígeno = 158 mm de Hg, presión parcial de anhídrido carbónico = 0.3 mm de Hg, presión parcial de vapor de agua = 5.7 mm de Hg y presión parcial de nitrógeno = 596 mm de Hg Conociendo las presiones parciales se puede hallar la presión total del aire atmosférico y con ella la fracción molar de cada uno de los componentes Fracción molar de oxígeno: Fracción molar del anhídrido: Fracción molar de vapor: Fracción molar de nitrógeno: 158 X O = = = 20.79% X A = = = 0.039% X V = = = 0.75% X N = = = 78.42%

14 UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE QUÍMICA Termodinámica Teoría 1. Un neumático de automóvil, se infló hasta una presión de 24 lb f /in 2 en un día de invierno, cuando la temperatura era de -5 ºC. Qué presión tendrá el neumático, en atm, suponiendo que no ha habido fugas, un día de verano cuando la temperatura es de 92 ºF? 2. Como parte de tu trabajo de investigación, te encomendaron determinar la identidad de una especie cuya fórmula es N X O Y. Para ello, te proporcionaron una muestra de dicho gas con una masa es de 6 g, la cual ocupa un volumen de 1.13 L a 3.5 atm y 80ºC. Cuál es la masa molar de dicho compuesto y su fórmula molecular? 3. Un gas ocupa un volumen de 2 L en condiciones normales. Qué volumen ocupará esa misma masa de gas a 2 atm y 50ºC? 4. En un recipiente de acero se colocan 8 gramos de un gas noble desconocido, a una temperatura de 27 ºC y una presión de 1.23 atmósferas. Se elimina dicho gas del recipiente, y se colocan 12.8 gramos de oxígeno gaseoso, a la misma temperatura, obteniéndose el doble de la presión anterior. Cuál es el gas desconocido? 5. En un laboratorio ubicado en la ciudad de México, (P atm = 58.5 cm Hg) se tiene el sistema que se muestra a continuación: El fluido manométrico empleado es agua. El diámetro interno del tubo de vidrio del manómetro es de 0.75 cm. Con esta información, responde las siguientes preguntas: a) Cómo es la presión del sistema con respecto a la atmosférica? b) Cuál es el valor de la presión manométrica en cm H 2 O? c) Cuánto vale la presión del sistema en cm H 2 O y en cm Hg? d) Cuánto vale el volumen del aire al interior del tubo de vidrio en cm 3? e) Calcula el valor de la constante K e indica sus unidades (considera la temperatura y la cantidad de sustancia constantes). 02/09/2013

EL ESTADO GASEOSO P R E S I Ó N

EL ESTADO GASEOSO P R E S I Ó N EL ESTADO GASEOSO El aire está compuesto, principalmente, de los elementos oxígeno y nitrógeno. Otros elementos no metálicos existen en la naturaleza como gases en condiciones ordinarias como hidrógeno

Más detalles

EL ESTADO GASEOSO. Algunas características importantes de los gases son: la expansibilidad, capacidad de difusión, baja densidad y altas presiones.

EL ESTADO GASEOSO. Algunas características importantes de los gases son: la expansibilidad, capacidad de difusión, baja densidad y altas presiones. EL ESTADO GASEOSO El aire está compuesto, principalmente, de los elementos oxígeno y nitrógeno. Otros elementos no metálicos existen en la naturaleza como gases en condiciones ordinarias como hidrógeno

Más detalles

Tema 12. Gases. Química General e Inorgánica A ESTADOS DE AGREGACION DE LA MATERIA

Tema 12. Gases. Química General e Inorgánica A ESTADOS DE AGREGACION DE LA MATERIA Tema 12 Gases Química General e Inorgánica A ESTADOS DE AGREGACION DE LA MATERIA 2.1 2.1 Variables que determinan el estado de agregación Tipo de material o materia Temperatura Presión 2.2 Elementos que

Más detalles

Algunas sustancias gaseosas a T y P ambiente

Algunas sustancias gaseosas a T y P ambiente LOS GASES Algunas sustancias gaseosas a T y P ambiente Fórmula Nombre Características O2 Oxígeno Incoloro,inodoro e insípido H 2 Hidrógeno Inflamable, más ligero que el aire. He Helio Incoloro, inerte,

Más detalles

ESTADO GASEOSO LEYES PARA GASES IDEALES

ESTADO GASEOSO LEYES PARA GASES IDEALES ESTADO GASEOSO LEYES PARA GASES IDEALES Estados de agregación COMPORTAMIENTO DE LOS GASES No tienen forma definida ni volumen propio Sus moléculas se mueven libremente y al azar ocupando todo el volumen

Más detalles

BLOQUE 1: ASPECTOS CUANTATIVOS DE LA QUÍMICA

BLOQUE 1: ASPECTOS CUANTATIVOS DE LA QUÍMICA BLOQUE 1: ASPECTOS CUANTATIVOS DE LA QUÍMICA Unidad 2: Los gases ideales Teresa Esparza araña 1 Índice 1. Los estados de agregación de la materia a. Los estados de la materia b. Explicación según la teoría

Más detalles

Director de Curso Francisco J. Giraldo R.

Director de Curso Francisco J. Giraldo R. Director de Curso Francisco J. Giraldo R. EL AIRE El aire seco es una mezcla de gases: El 78% es Nitrógeno. El 21% es Oxígeno. El 1% es Argón. El Dioxido de carbono (CO 2 ), Helio (He), Neón (Ne), Kripton

Más detalles

GASES. Contenidos. Leyes de los gases y su aplicación en la resolución de problemas numéricos.

GASES. Contenidos. Leyes de los gases y su aplicación en la resolución de problemas numéricos. GASES Contenidos Postulados de la teoría cinética de los gases y su relación con las características (expansión, comprensión y difusión) y las propiedades ( presión, volumen y temperatura) que los definen.

Más detalles

P T = P A + P B + P C.

P T = P A + P B + P C. 6. Ley de Dalton: La ley de Dalton establece que en una mezcla de gases cada gas ejerce su presión como si los restantes gases no estuvieran presentes. La presión específica de un determinado gas en una

Más detalles

UNIDAD 2: ESTADO GASEOSO

UNIDAD 2: ESTADO GASEOSO UNIDAD 2: ESTADO GASEOSO 1 CARACTERISTICAS DE LOS GASES Los gases poseen masa y ocupan un determinado volumen en el espacio, este volumen queda determinado por el volumen del recipiente que los contiene.

Más detalles

Profesora: Teresa Esparza Araña ASPECTOS CUANTITATIVOS DE LA QUÍMICA. UNIDAD 2: Los gases ideales

Profesora: Teresa Esparza Araña ASPECTOS CUANTITATIVOS DE LA QUÍMICA. UNIDAD 2: Los gases ideales Departamento de Física y Química Profesora: Teresa Esparza Araña CEAD P. Félix Pérez Parrilla ASPECTOS CUANTITATIVOS DE LA QUÍMICA UNIDAD 2: Los gases ideales ÍNDICE 1. LOS GASES SEGÚN LA TEORÍA CINÉTICA

Más detalles

9 LEYES DE LOS GASES

9 LEYES DE LOS GASES 9 LEYES DE LOS GASES Imagen Google: Expansión de un gas por la temperatura INTRODUCCIÓN El estado gaseoso es un estado disperso de la materia, es decir, que las moléculas del gas están separadas unas de

Más detalles

LEYES DE LOS GASES. Leyes de los gases. Leyes de los gases

LEYES DE LOS GASES. Leyes de los gases. Leyes de los gases LEYES DE LOS GASES Estado gaseoso Medidas en gases Ley de Avogadro Ley de Boyle y Mariotte Ley de Charles y Gay-Lussac (1ª) Ley de Charles y Gay-Lussac (2ª) Ecuación n general de los gases ideales Teoría

Más detalles

Ejercicios 4 (Gases)

Ejercicios 4 (Gases) Profesor Bernardo Leal Química Ejercicios 4 (Gases) Leyes de los gases: 1) Una cantidad fija de gas a 23 ºC exhibe una presión de 748 torr y ocupa un volumen de 10,3 L. a) Utilice la ley de Boyle para

Más detalles

EPO 11 ESCUELA PREPARATORIA OFICIAL NÚM. 11 FUENTE: VALORACIONES: FECHA: CUAUTITLAN IZCALLI, MEX. MATERIA: QUÍMICA II

EPO 11 ESCUELA PREPARATORIA OFICIAL NÚM. 11 FUENTE: VALORACIONES: FECHA: CUAUTITLAN IZCALLI, MEX. MATERIA: QUÍMICA II Diagnóstico 1PTO: NO ENTREGADA EN TIEMPO Y FORMA. 2PTS: ACTIVIDAD INCOMPLETA. 3PTS: ACTIVIDA COMPLETA. 1 TEMÁTICA INTEGRADORA ESCENARIO DIDÁCTICO PREGUNTA GENERADORA 2 Desarrolla, analiza e interpreta

Más detalles

DILATACIÓN DE LOS GASES 1

DILATACIÓN DE LOS GASES 1 Describa los siguiente conceptos. Propiedad de los gases. Presión. Volumen. emperatura. Biografias de: Joseph Louis Gay-Lussac. Jacques Charles. Robert Boyle. Ley de Boyle Formula ley de Boyle. Ley de

Más detalles

a) Cuál será el volumen de una muestra de gas a 30 ºC, si inicialmente teníamos

a) Cuál será el volumen de una muestra de gas a 30 ºC, si inicialmente teníamos EJERCICIOS GASES 3ER CORTE I. Ejercicios integrales 1. Ley de Charles a) Cuál será el volumen de una muestra de gas a 30 ºC, si inicialmente teníamos 400 ml a 0 ºC, permaneciendo constante la presión?.

Más detalles

Profesora: Teresa Esparza Araña LA CANTIDAD DE SUSTANCIA EN QUÍMICA. UNIDAD 6: Los gases ideales

Profesora: Teresa Esparza Araña LA CANTIDAD DE SUSTANCIA EN QUÍMICA. UNIDAD 6: Los gases ideales Departamento de Física y Química Profesora: Teresa Esparza Araña CEAD P. Félix Pérez Parrilla LA CANTIDAD DE SUSTANCIA EN QUÍMICA UNIDAD 6: Los gases ideales 1. LOS GASES SEGÚN LA TEORÍA CINÉTICA DE LA

Más detalles

MOL. Nº AVOGADRO GASES. TEMA 4 Pág. 198 libro (Unidad 10)

MOL. Nº AVOGADRO GASES. TEMA 4 Pág. 198 libro (Unidad 10) MOL. Nº AVOGADRO GASES TEMA 4 Pág. 198 libro (Unidad 10) CONCEPTOS PREVIOS Supuestos de Dalton Teoría atómica de Dalton Elementos constituidos por átomos, partículas separadas e indivisibles Átomos de

Más detalles

P V = n R T LEYES DE LOS GASES

P V = n R T LEYES DE LOS GASES P V = n R T LEYES DE LOS GASES Estado gaseoso Medidas en gases Leyes de los gases Ley de Avogadro Leyes de los gases Ley de Boyle y Mariotte Ley de Charles y Gay-Lussac (1ª) Ley de Charles y Gay-Lussac

Más detalles

P/T = k V y n ctes. P y T ctes. P y n ctes. T y n ctes. presión. temperatura. escala. absoluta. empírica. absoluta atmosférica manométrica

P/T = k V y n ctes. P y T ctes. P y n ctes. T y n ctes. presión. temperatura. escala. absoluta. empírica. absoluta atmosférica manométrica presión volumen mol temperatura escala absoluta atmosférica manométrica absoluta empírica Boyle Charles Gay Lussac Avogadro PV = k T y n ctes V/T = k P y n ctes P/T = k V y n ctes V/n = Vm P y T ctes PV

Más detalles

GASES - PREGUNTAS DE TEST (2016) En la última página se ofrecen las soluciones

GASES - PREGUNTAS DE TEST (2016) En la última página se ofrecen las soluciones GASES - PREGUNTAS DE TEST (2016) En la última página se ofrecen las soluciones Grupo A - CONCEPTOS GENERALES: CONCEPTO DE GAS Y VAPOR Grupo B - LEYES GENERALES DE LOS GASES IDEALES: Grupo C- LEY DE GRAHAM

Más detalles

UNIVERSIDAD DE PUERTO RICO EN HUMACAO DEPARTAMENTO DE QUÍMICA (http://cuhwww.upr.clu.edu/~quimgen) QUIM Módulo de Gases

UNIVERSIDAD DE PUERTO RICO EN HUMACAO DEPARTAMENTO DE QUÍMICA (http://cuhwww.upr.clu.edu/~quimgen) QUIM Módulo de Gases Al finalizar este módulo usted podrá: UNIVERSIDAD DE PUERTO RICO EN HUMACAO DEPARTAMENTO DE QUÍMICA (http://cuhwww.upr.clu.edu/~quimgen) QUIM 3003 Módulo de Gases Enunciar las Leyes de: 1. Boyle 2. Charles

Más detalles

Unidad III. Sistemas Monofásicos

Unidad III. Sistemas Monofásicos UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA Ingeniería Química Unidad III. Balance de materia Sistemas Monofásicos

Más detalles

Principios y conceptos básicos de Química

Principios y conceptos básicos de Química Principios y conceptos básicos de Química Se estudiarán durante las dos primeras quincenas, estos contenidos están en el tema 2 del libro de texto. Quincena 1ª - Repaso de conceptos estudiados en ESO (Densidad,

Más detalles

QUÍMICA. Tema 4. Estados de Agregación de la Materia

QUÍMICA. Tema 4. Estados de Agregación de la Materia Tema 4. Estados de Agregación de la Materia Índice - Características de sólidos, líquidos y gases - Volumen molar de los gases - Ecuación de estado de los gases - Disoluciones Objetivos específicos - Que

Más detalles

Materia y disoluciones

Materia y disoluciones Materia y disoluciones 1º.- Calcula la temperatura a la que habrá que someter 80 litros de un gas, para que ocupe un volumen de 15 litros a una presión de 18 atmósfera. S: 648,3 ºC 2º.- Un recipiente contiene

Más detalles

MOL. Nº AVOGADRO GASES. TEMA 4 Pág. 198 libro (Unidad 10)

MOL. Nº AVOGADRO GASES. TEMA 4 Pág. 198 libro (Unidad 10) MOL. Nº AVOGADRO GASES TEMA 4 Pág. 198 libro (Unidad 10) CONCEPTOS PREVIOS Supuestos de Dalton Teoría atómica de Dalton Elementos constituidos por átomos, partículas separadas e indivisibles Átomos de

Más detalles

MOL. Nº AVOGADRO DISOLUCIONES. TEMA 4 Pág. 198 libro (Unidad 10)

MOL. Nº AVOGADRO DISOLUCIONES. TEMA 4 Pág. 198 libro (Unidad 10) MOL. Nº AVOGADRO DISOLUCIONES TEMA 4 Pág. 198 libro (Unidad 10) CONCEPTOS PREVIOS Supuestos de Dalton Teoría atómica de Dalton Elementos consitudios por átomos, partícuals separads e indivisibles Átomos

Más detalles

EJERCICIOS GASES IDEALES Y REALES

EJERCICIOS GASES IDEALES Y REALES EJERCICIOS GASES IDEALES Y REALES 1. Establezca las diferencias entre un gas ideal y un gas real teniendo en cuenta a. El factor de compresibilidad Z, b. La ecuación de Van der Waals c. Valores de presión

Más detalles

COMPORTAMIENTO GASEOSO

COMPORTAMIENTO GASEOSO 1 COMPORTAMIENTO GASEOSO 2 ACTIVIDAD de Completar y colorear e interpretar Baje la química CHANG de la página web: liceoquimica-rgg.jimdo.com Busque la página 172 capitulo V 1. MEMORICE la siguiente lista

Más detalles

TAREA 1. Nombre Núm. de lista Grupo Turno Núm. de Expediente Fecha

TAREA 1. Nombre Núm. de lista Grupo Turno Núm. de Expediente Fecha TAREA 1 Nombre Núm. de lista Grupo Turno Núm. de Expediente Fecha INSTRUCCIONES: Investiga como es el puente de Hidrógeno en las estructuras del H 2 O, NH 3 y HF. Dibuja los modelos resaltando con color

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA QUÍMICA GENERAL

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA QUÍMICA GENERAL UNIERSIDAD NACIONAL EXERIMENAL OLIECNICA ANONIO JOSÉ DE SUCRE ICERRECORADO BARQUISIMEO DEARAMENO DE INGENIERÍA QUÍMICA QUÍMICA GENERAL UNIDAD I CLASE Nº EL ESADO GASEOSO GAS REAL Gas erfecto: es aquel

Más detalles

Teoría Mol Nº Avogadro Gases perfectos Física y Química. 1º bachiller CONCEPTOS PREVIOS

Teoría Mol Nº Avogadro Gases perfectos Física y Química. 1º bachiller CONCEPTOS PREVIOS CONCEPTOS PREVIOS Masa atómica: Es la masa de un átomo en reposo. En cursos anteriores denominábamos número atómico a la masa de un átomo (protones + neutrones). Pero los elementos tienen átomos con diferente

Más detalles

Física y Química 1º Bach.

Física y Química 1º Bach. Física y Química 1º Bach. Leyes de los gases. Teoría cinético-molecular 05/11/10 DEPARTAMENTO FÍSICA E QUÍMICA Nombre: OPCIÓN 1 1. Observa el aparato de la Figura. Si la temperatura del aceite se eleva

Más detalles

Termodinámica: Conceptos Fundamentales Parte 3

Termodinámica: Conceptos Fundamentales Parte 3 Termodinámica: Conceptos Fundamentales Parte 3 Olivier Skurtys Departamento de Ingeniería Mecánica Universidad Técnica Federico Santa María Email: olivier.skurtys@usm.cl Santiago, 26 de abril de 2012 Presentación

Más detalles

QUÍMICA GENERAL GASES IDEALES

QUÍMICA GENERAL GASES IDEALES QUÍMICA GENERAL GASES IDEALES INTRODUCCIÓN TEORÍA CINÉTICA DE LOS GASES LEYES DE LOS GASES IDEALES TEORÍA CINÉTICA DE LOS GASES DEFINICIÓN Entre 1850 y 1880 Clausius y Boltzmann desarrollaron esta teoría,

Más detalles

3. Física del Buceo. Séptima Compañía de Bomberos Acción y Disciplina Tome Dichato Fundada el 24 de Octubre de 1975 GERSA

3. Física del Buceo. Séptima Compañía de Bomberos Acción y Disciplina Tome Dichato Fundada el 24 de Octubre de 1975 GERSA 3. Física del Buceo Séptima Compañía de Bomberos Acción y Disciplina Tome Dichato Fundada el 24 de Octubre de 1975 GERSA 1. Conceptos básicos y unidades de medida 1.1 Materia y sus estados Es todo aquello

Más detalles

C: GASES Y PRESIÓN DE VAPOR DEL AGUA

C: GASES Y PRESIÓN DE VAPOR DEL AGUA hecho el vacío. Calcula a) Cantidad de gas que se tiene ; b) la presión en los dos recipientes después de abrir la llave de paso y fluir el gas de A a B, si no varía la temperatura. C) Qué cantidad de

Más detalles

TEMA 1 Cambios de fase

TEMA 1 Cambios de fase TEMA 1 Cambios de fase 1.1. Introducción CLIMATIZACIÓN: crear y mantener un ambiente térmico en un espacio para desarrollar eficientemente una determinada actividad CONFORT O BIENESTAR: - Térmico - Lumínico

Más detalles

Ley de conservación de la masa o ley de Lavoisier Ley de las proporciones definidas o ley de Proust

Ley de conservación de la masa o ley de Lavoisier Ley de las proporciones definidas o ley de Proust REPASO DE QUÍMICA 1 Leyes ponderales-1 Ley de conservación de la masa o ley de Lavoisier: En toda reacción química, en un sistema cerrado, la masa de todas las sustancias existentes se conserva. Ley de

Más detalles

Etapa 4 GASES SUS LEYES Y COMPORTAMIENTO. Nombre Grupo Matrícula PROPIEDAD DESCRIPCIÓN UNIDADES DE MEDICION PRESION (P)

Etapa 4 GASES SUS LEYES Y COMPORTAMIENTO. Nombre Grupo Matrícula PROPIEDAD DESCRIPCIÓN UNIDADES DE MEDICION PRESION (P) Etapa 4 GASES SUS LEYES Y COMPORTAMIENTO Nombre Grupo Matrícula PROPIEDADES DE LOS GASES: I. Completa correctamente la siguiente tabla. PROPIEDAD DESCRIPCIÓN UNIDADES DE MEDICION PRESION (P) VOLUMEN (V)

Más detalles

LA MATERIA 1. Teoría atómica de Dalton. 2. La materia. 3. Leyes químicas. 4. El mol. 5. Leyes de los gases ideales. 6. Símbolos y fórmulas.

LA MATERIA 1. Teoría atómica de Dalton. 2. La materia. 3. Leyes químicas. 4. El mol. 5. Leyes de los gases ideales. 6. Símbolos y fórmulas. LA MATERIA 1. Teoría atómica de Dalton. 2. La materia. 3. Leyes químicas. 4. El mol. 5. Leyes de los gases ideales. 6. Símbolos y fórmulas. Química 1º bachillerato La materia 1 1. TEORÍA ATÓMICA DE DALTON

Más detalles

UNIVERSIDAD TECNICA LUIS VARGAS TORRES" DE ESMERALDAS

UNIVERSIDAD TECNICA LUIS VARGAS TORRES DE ESMERALDAS UNIVERSIDAD TECNICA LUIS VARGAS TORRES" DE ESMERALDAS FACULTAD DE INGENIERIAS Y TECNOLOGIAS ING. PAUL VISCAINO VALENCIA DOCENTE Esmeraldas, 06 de Julio del 2016 UNIVERSIDAD TECNICA "LUIS VARGAS TORRES"

Más detalles

Cuestiones del Tema 1: Aspectos cuantitativos en Química

Cuestiones del Tema 1: Aspectos cuantitativos en Química Cuestiones del Tema 1: Aspectos cuantitativos en Química 1.- La fórmula empírica de un compuesto orgánico es C 2H 4O. Si su masa molecular es 88: a) Determine su fórmula molecular. b) Calcule el número

Más detalles

Teoría Cinética de los Gases

Teoría Cinética de los Gases NOMBRE: CURSO: EJEMPLO: Un envase con un volumen de 0,3 m³ contiene 2 moles de helio a 20º C. Suponiendo que el helio se comporta como un gas ideal, calcular: a) la energía cinética total del sistema,

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago. Química

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago. Química Gases RECUERDEN QUE: En los ejercicios de gases SIEMPRE deben trabajar con la temperatura en K ( C + 273). Además, por conveniencia, en esta unidad cuando hablemos de masa molar en gases, usaremos la sigla

Más detalles

ESTEQUIOMETRIA Y GASES

ESTEQUIOMETRIA Y GASES QUÍMICA GENERAL -1º año de Ingeniería Química UTN FRRo Pág 1 de 5 Unidades de presión atmosférica ESTEQUIOMETRIA Y GASES Patm = densidad Hg x altura de columna de mercurio = dhg x hhg = = 13,6 g / cm 3

Más detalles

CÁTEDRA: QUÍMICA GUÍA DE PROBLEMAS Nº 4

CÁTEDRA: QUÍMICA GUÍA DE PROBLEMAS Nº 4 CÁTEDRA: QUÍMICA GUÍA DE PROBLEMAS Nº 4 TEMA: GASES IDEALES OBJETIVO: Interpretar el comportamiento de un gas; explicar las propiedades; definir las variables que afectan su comportamiento (presión, temperatura,

Más detalles

Masas atómicas (g/mol): O = 16; S = 32; Zn = 65,4. Sol: a) 847 L; b) 710,9 g; c) 1,01 atm.

Masas atómicas (g/mol): O = 16; S = 32; Zn = 65,4. Sol: a) 847 L; b) 710,9 g; c) 1,01 atm. 1) Dada la siguiente reacción química: 2 AgNO3 + Cl2 N2O5 + 2 AgCl + ½ O2. a) Calcule los moles de N2O5 que se obtienen a partir de 20 g de AgNO3. b) Calcule el volumen de O2 obtenido, medido a 20 ºC y

Más detalles

Química General. Cap. 3: Gases. Departamento de Química. Universidad Nacional Experimental del Táchira (UNET) San Cristóbal 2007

Química General. Cap. 3: Gases. Departamento de Química. Universidad Nacional Experimental del Táchira (UNET) San Cristóbal 2007 Química General Departamento de Química Cap. 3: Gases Universidad Nacional Experimental del Táchira (UNET) San Cristóbal 2007 Propiedades de los Gases: Presión del Gas Presión del gas Fuerza (N) P (Pa)

Más detalles

HOJA DE PROBLEMAS 1: ENUNCIADOS

HOJA DE PROBLEMAS 1: ENUNCIADOS Tema: GASES HOJA DE PROBLEMAS 1: ENUNCIADOS 1. ( ) Los puntos de fusión a 1 atm de presión de yodo, bromo, cloro y fluor sólidos son 113.7, -7.3, -101.5 y -219.62 C. Justifique esta variación teniendo

Más detalles

Gases...1. Características: Volumen:...1. Temperatura:

Gases...1. Características: Volumen:...1. Temperatura: Índice de contenido Gases......1 Características:......1 Volumen:......1 Temperatura:......1 Presión:......2 Medición de presiones:......2 Ley de Boyle (relación presión volumen):......2 Ley de Charles

Más detalles

Ejercicios. Ejercicios. 1. Cuántas moléculas de metano (CH 4) ) hay en 10 moles de dicho compuesto? 2. Calcula la masa de 10 moles de CO 2

Ejercicios. Ejercicios. 1. Cuántas moléculas de metano (CH 4) ) hay en 10 moles de dicho compuesto? 2. Calcula la masa de 10 moles de CO 2 TEMA 3: 3 : LOS GASES EL MOL Ya hemos visto que los átomos y las moléculas de los elementos y compuestos son extremadamente pequeños. En 1 gramo de H 2O hay 3,3. 10 22 moléculas. En cualquier muestra de

Más detalles

Seminario 2. Fuerzas Intermoleculares Líquidos y Sólidos

Seminario 2. Fuerzas Intermoleculares Líquidos y Sólidos Seminario 2. Fuerzas Intermoleculares Líquidos y Sólidos 2.. Justificar los datos de la siguiente tabla: PM Punto de ebullición o C 2-metilbutano (CH 3 ) 2 CHCH 2 CH 3 -cloropropano CH 3 CH 2 CH 2 Cl 72

Más detalles

LEYES DE GASES IDEALES

LEYES DE GASES IDEALES LEYES DE GASES IDEALES PV= k1 Se mantiene Ctte T,n V= k2*t Se mantiene Ctte P,n LEYES DE GASES IDEALES Ecuación de Estado. Donde: P indica la presión del gas. V indica el volumen del gas. n es el número

Más detalles

Física y Química 1º Bachillerato LOMCE

Física y Química 1º Bachillerato LOMCE Física y Química 1º Bachillerato LOMCE FyQ 1 IES de Castuera Bloque 2 Aspectos Cuantitativos de la Química 201 2016 Unidad Didáctica 1 Rev 01 Las Leyes Ponderales y Las Leyes de los Gases Ideales 1.1 Las

Más detalles

En el siglo XVIII la química estableció las medidas precisas de masa y volúmenes que llevaron a enunciar las llamadas leyes ponderales.

En el siglo XVIII la química estableció las medidas precisas de masa y volúmenes que llevaron a enunciar las llamadas leyes ponderales. 1. LEYES PONDERALES En el siglo XVIII la química estableció las medidas precisas de masa y volúmenes que llevaron a enunciar las llamadas leyes ponderales. Ley de conservación de la masa de Lavoisier Lavosier

Más detalles

GASES 09/06/2011. La Tierra está rodeada por una mezcla de gases que se denomina atmósfera, cuya composición es la siguiente: La atmósfera

GASES 09/06/2011. La Tierra está rodeada por una mezcla de gases que se denomina atmósfera, cuya composición es la siguiente: La atmósfera La Tierra está rodeada por una mezcla de gases que se denomina atmósfera, cuya composición es la siguiente: GASES Nitrógeno 78% Oxígeno 21% Otros gases 1% La atmósfera también almacena otros gases Vapor

Más detalles

COLECCIÓN DE PROBLEMAS TEMA 0 QUÍMICA 2º BACHILLERATO. SANTILLANA. Dónde habrá mayor número de átomos, en 1 mol de metanol o en 1 mol

COLECCIÓN DE PROBLEMAS TEMA 0 QUÍMICA 2º BACHILLERATO. SANTILLANA. Dónde habrá mayor número de átomos, en 1 mol de metanol o en 1 mol COLECCIÓN DE PROBLEMAS TEMA 0 QUÍMICA 2º BACHILLERATO. SANTILLANA. Dónde habrá mayor número de átomos, en 1 mol de metanol o en 1 mol de ácido metanoico (ácido fórmico)? Si tenemos en cuenta las fórmulas

Más detalles

TEORICO-PRÁCTICO N 5: LEYES DE LOS GASES IDEALES

TEORICO-PRÁCTICO N 5: LEYES DE LOS GASES IDEALES TEORICO-PRÁCTICO N 5: LEYES DE LOS GASES IDEALES FUNDAMENTO TEÓRICO: La materia puede estar en tres estados: sólido, líquido y gaseoso. Los gases, no tienen forma ni volumen fijo, las fuerzas que mantienen

Más detalles

- Leyes ponderales: Las leyes ponderales relacionan las masas de las sustancias que intervienen en una reacción química.

- Leyes ponderales: Las leyes ponderales relacionan las masas de las sustancias que intervienen en una reacción química. FÍSICA Y QUÍMICA 4ºESO COLEGIO GIBRALJAIRE CÁLCULOS QUÍMICOS 1.- LA REACCIÓN QUÍMICA. LEYES PONDERALES Una reacción química es el proceso en el que, mediante una reorganización de enlaces y átomos, una

Más detalles

Practica Nro. 1.- Tema: Gases Resolver los pares. Agosto de 2016

Practica Nro. 1.- Tema: Gases Resolver los pares. Agosto de 2016 Practica Nro. 1.- Tema: Gases Resolver los pares. Agosto de 2016 1.- Cuál es la diferencia entre calor y temperatura? 2.- Enunciar las leyes de Boyle, Charles, Gay. Lussac, Avogadro y Dalton de las presiones

Más detalles

TEMA 7: Problemas de Química

TEMA 7: Problemas de Química TEMA 7: Problemas de Química Tema 7: Problemas de Química 1 1.- REACCIONES QUÍMICAS Una reacción química es un proceso en el que se unen varias sustancias llamadas reactivos y se transforman en otras sustancias

Más detalles

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física Electricidad y calor Dr. Roberto Pedro Duarte Zamorano Departamento de Física 2011 A. Termodinámica Temario 1. Temperatura y Ley Cero. (3horas) 2. Calor y transferencia de calor. (5horas) 3. Gases ideales

Más detalles

TEMA 2: LEYES Y CONCEPTOS BÁSICOS EN QUÍMICA

TEMA 2: LEYES Y CONCEPTOS BÁSICOS EN QUÍMICA 1. SUSTANCIAS PURAS Y MEZCLAS 2. LEYES PONDERALES DE LAS COMBINACIONES QUÍMICAS 2.1. LEY DE CONSERVACIÓN DE LA MATERIA Enunciada en 1783 por Lavoisier: La materia ni se crea ni se destruye, únicamente

Más detalles

EJERCICIOS DE REFUERZO/AMPLIACIÓN Control 1

EJERCICIOS DE REFUERZO/AMPLIACIÓN Control 1 EJERCICIOS DE REFUERZO/AMPLIACIÓN Control 1 R-1 Explica qué le ocurre a la densidad de un gas cuando: se dilata se le aumenta la presión a temperatura constante Cuando una sustancia se dilata, su masa

Más detalles

PROPIEDADES DE LA MATERIA. Departamento de Física y Química 2º ESO

PROPIEDADES DE LA MATERIA. Departamento de Física y Química 2º ESO PROPIEDADES DE LA MATERIA Departamento de Física y Química 2º ESO 0. Mapa conceptual Estados de agregación Sólido Líquido Gaseoso Propiedades MATERIA Teoría cinética Generales Específicas Leyes de los

Más detalles

EJERCICIOS DE REFUERZO/AMPLIACIÓN Control 1

EJERCICIOS DE REFUERZO/AMPLIACIÓN Control 1 EJERCICIOS DE REFUERZO/AMPLIACIÓN Control 1 R-1 Explica qué le ocurre a la densidad de un gas cuando: se dilata se le aumenta la presión a temperatura constante Cuando una sustancia se dilata, su masa

Más detalles

HOJA DE PROBLEMAS 6: ENUNCIADOS

HOJA DE PROBLEMAS 6: ENUNCIADOS Tema: EQUILIBRIO QUÍMICO HOJA DE PROBLEMAS 6: ENUNCIADOS 1. ( ) Se ha hallado que una mezcla en equilibrio 2 SO 2 + O 2 2 SO 3 contenida en un recipiente de 2 litros a una temperatura determinada, contiene

Más detalles

1. a) Define a la unidad de masa atómica. b) Explica porqué cuando en los datos se indica la masa atómica de los elementos no se le pone unidades.

1. a) Define a la unidad de masa atómica. b) Explica porqué cuando en los datos se indica la masa atómica de los elementos no se le pone unidades. NÚMERO DE AVOGADRO / MOL 1. a) Define a la unidad de masa atómica. b) Explica porqué cuando en los datos se indica la masa atómica de los elementos no se le pone unidades. a) La uma es la doceava parte

Más detalles

Los Gases y la teoría Cinético - Molecular

Los Gases y la teoría Cinético - Molecular Universidad de La Frontera Fac. Ing. Cs. y Adm. Dpto. Cs. Químicas Los Gases y la teoría Cinético - Molecular Prof. Josefina Canales Algunos gases industriales importantes Nombre - Fórmula Origen y uso

Más detalles

UNIDAD Nº 2: GASES IDEALES Y CALORIMETRIA

UNIDAD Nº 2: GASES IDEALES Y CALORIMETRIA UNIDAD Nº 2: GASES IDEALES Y CALORIMETRIA UNIVERSIDAD CATÓLICA DE SALTA FAC. DE CS AGRARIAS Y VETERINARIAS AÑO 2008 Farm. Pablo F. Corregidor 1 TEMPERATURA 2 TEMPERATURA Termoreceptores: Externos (piel)

Más detalles

DEFINICIONES ELEMENTALES

DEFINICIONES ELEMENTALES DEFINICIONES ELEMENTALES A partir de las leyes pónderales y de la ley de Lavoisier aparece el concepto de peso equivalente ó peso de combinación, que es el peso de un elemento que se combina con un peso

Más detalles

Unidad 0 CÁLCULOS QUÍMICOS. Unidad 0. Cálculos químicos

Unidad 0 CÁLCULOS QUÍMICOS. Unidad 0. Cálculos químicos Unidad 0 CÁLCULOS QUÍMICOS Unidad 0. Cálculos químicos 1 0. Leyes ponderales Leyes que rigen las combinaciones químicas. Se basan en la experimentación y miden cuantitativamente la cantidad de materia

Más detalles

INGENIERO. JOSMERY SÁNCHEZ

INGENIERO. JOSMERY SÁNCHEZ UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO "EL SABINO" PROGRAMA DE INGENIERÍA MECÁNICA AREA DE TECNOLOGÍA UNIDAD CURRICULAR: TERMODINÁMICA APLICADA REALIZADO POR: INGENIERO.

Más detalles

GUÍA DE EJERCICIOS GASES

GUÍA DE EJERCICIOS GASES GUÍA DE EJERCICIOS GASES Área Química Resultados de aprendizaje Aplicar conceptos básicos de gases en la resolución de ejercicios. Desarrollar pensamiento lógico y sistemático en la resolución de problemas.

Más detalles

QUÍMICA 2º BACHILLER: REPASO GENERAL 1º A.- Conceptos previos

QUÍMICA 2º BACHILLER: REPASO GENERAL 1º A.- Conceptos previos EL RINCÓN DEL APROBADO Tu academia en Orense Galerías Santo Domingo 607342451 QUÍMICA 2º BACHILLER: REPASO GENERAL 1º A.- Conceptos previos A.1.- Átomo, peso atómico, peso molecular, mol. Un átomo es una

Más detalles

Unidad 4: Estado Gaseoso Introducción Teórica

Unidad 4: Estado Gaseoso Introducción Teórica Unidad 4: Estado Gaseoso Introducción Teórica En esta unidad vamos a ampliar y explicar algunas de las características del estado gaseoso que ya han sido tratadas en la Unidad 1, como por ejemplo la de

Más detalles

UNIDAD 3 ESTADO GASEOSO

UNIDAD 3 ESTADO GASEOSO UNIDAD DIDÁCTICA 3 UNIDAD 3 ESTADO GASEOSO En la naturaleza, las sustancias se puede presentar en tres diferentes estados de agregación: sólido, líquido y gaseoso, cada uno de los cuales se distingue por

Más detalles

SEGUNDA PRACTICA DE QUÍMICA

SEGUNDA PRACTICA DE QUÍMICA UNIVERSIDAD MAYOR DE SAN SIMÓN FACULTAD DE CIENCIAS Y TECNOLOGÍA DEPARTAMENTO DE QUÍMICA CURSO PROPEDÉUTICO ESTADO GASEOSO SEGUNDA PRACTICA DE QUÍMICA 1. El acetileno (C 2 H 2 ) es un combustible utilizado

Más detalles

SESIÓN 13 EQUILIBRIO QUÍMICO EN FASE GASEOSA

SESIÓN 13 EQUILIBRIO QUÍMICO EN FASE GASEOSA I. CONTENIDOS: 1. Leyes de los gases. 2. Presión y temperatura. 3. Principio de Le Chatelier. 4. Constante de equilibrio. SESIÓN 13 EQUILIBRIO QUÍMICO EN FASE GASEOSA II. OBJETIVOS: Al término de la Sesión,

Más detalles

PRINCIPIOS FISICOQUÍMICOS EN GEOFÍSICA I

PRINCIPIOS FISICOQUÍMICOS EN GEOFÍSICA I RINCIIOS FISICOQUÍMICOS EN GEOFÍSICA I Introducción Conceptos Básicos de Termodinámica ropiedades Físicas de los Gases Gases Ideales Ecuaciones de Estado INTRODUCCIÓN La fisicoquímica se divide en 4 áreas:

Más detalles

1 o Bachillerato. II. QUÍMICA Leyes fundamentales de la. Prof. Jorge Rojo Carrascosa

1 o Bachillerato. II. QUÍMICA Leyes fundamentales de la. Prof. Jorge Rojo Carrascosa FÍSICA Y QUÍMICA 1 o Bachillerato I. FÍSICA II. QUÍMICA Leyes fundamentales de la Química Prof. Jorge Rojo Carrascosa Índice general 1. LEYES FUNDAMENTALES DE LA QUÍMICA 2 1.1. LEYES PONDERALES.........................

Más detalles

GUIA PRATICA TEMA: GASES IDEALES

GUIA PRATICA TEMA: GASES IDEALES UNIDAD 3: GASES (TEMA 2: GASES IDEALES) UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSE DE SUCRE VICE RECTORADO PUERTO ORDAZ DEPARTAMENTO DE ESTUDIOS GENERALES SECCIÓN DE QUÍMICA Asignatura:

Más detalles

GASES IDEALES. P. V = n. R. T

GASES IDEALES. P. V = n. R. T GASES IDEALES Lic. Lidia Iñigo A esta altura de tus estudios seguramente ya sabés que hay muchas sustancias formadas por moléculas, qué es una molécula, y que una sustancia determinada puede presentarse

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 QUÍMICA TEMA 1: LA TRANSFORMACIÓN QUÍMICA Junio, Ejercicio, Opción B Reserva 1, Ejercicio 5, Opción A Reserva 1, Ejercicio 5, Opción B Reserva, Ejercicio,

Más detalles

F A P = F A ESTADOS DE LA MATERIA ESTADO GASEOSO PROPIEDADES DE LOS GASES

F A P = F A ESTADOS DE LA MATERIA ESTADO GASEOSO PROPIEDADES DE LOS GASES ESTADO GASEOSO ROIEDADES DE LOS GASES ESTADOS DE LA MATERIA Estados de la materia Sólido Líquido Gaseoso Bibliografía: Química la Ciencia Central - T.Brown, H.Lemay y B. Bursten. Química General - McMurry-Fay

Más detalles

Electricidad y calor. Gases. Temas. 3. Gases ideales y estados termodinámicos. Webpage:

Electricidad y calor. Gases. Temas. 3. Gases ideales y estados termodinámicos. Webpage: Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temas 3. Gases ideales y estados termodinámicos. i. Concepto y características del gas ideal.

Más detalles

GASES IDEALES. Contiene una mezcla de gases CP + O 2. Volumen = 1 litro Temperatura = 23 C = ,15 = 298,15K =585 = 0,7697 =250 = 0,3289

GASES IDEALES. Contiene una mezcla de gases CP + O 2. Volumen = 1 litro Temperatura = 23 C = ,15 = 298,15K =585 = 0,7697 =250 = 0,3289 GASES IDEALES PROBLEMA 10 Mezclas de los gases ciclopropano (C 3H 8) y oxígeno se utilizan mucho como anestésicos. a) Cuántos moles de cada gas están presentes en un recipiente de 1 litro a 23 C, si la

Más detalles

PROBLEMAS QUÍMICA. (Proyecto integrado)

PROBLEMAS QUÍMICA. (Proyecto integrado) PROBLEMAS QUÍMICA. (Proyecto integrado) CONCEPTOS FUNDAMENTALES 1. Razone qué cantidad de las siguientes sustancias tiene mayor nº de átomos: a) 0 5 moles de SO 2 b) 14 gramos de nitrógeno molecular. c)

Más detalles

Capítulo 3: La cantidad en química

Capítulo 3: La cantidad en química Capítulo 3: La cantidad en química ACTIVIDADES DE RECAPITULACIÓN 1. Las masas atómicas del hidrógeno y del helio son 1 y 4, respectivamente. Indica, razonadamente, si las siguientes afirmaciones son verdaderas

Más detalles

Materia: FÍSICA Y QUÍMICA 3º E.S.O Curso

Materia: FÍSICA Y QUÍMICA 3º E.S.O Curso ACTIVIDADES FÍSICA Y QUÍMICA 3º ESO PROGRAMA DE REFUERZO. PRIMERA PARTE 1.-Calcular el tanto por ciento en peso y en volumen de una disolución que se prepara al disolver 40 ml de ácido nítrico cuya densidad

Más detalles

5. Cuánto pesan 1,025 moles de amoníaco más 6, átomos de plata? Expresa el resultado en gramos. Dato: 1 u = 1, g Sol: 125,295 g

5. Cuánto pesan 1,025 moles de amoníaco más 6, átomos de plata? Expresa el resultado en gramos. Dato: 1 u = 1, g Sol: 125,295 g EJERCICIOS DE REPASO 2º BACH CANTIDADES EN QUÍMICA 1. La masa atómica de la plata que encontramos en las tablas es de 107,87 u. Determina la abundancia relativa de los dos isótopos que tiene, sabiendo

Más detalles

Materia: FÍSICA Y QUÍMICA Curso

Materia: FÍSICA Y QUÍMICA Curso ACTIVIDADES DE REFUERZO FÍSICA Y QUÍMICA 3º ESO. JUNIO 2015. 1.- Realizar las configuraciones electrónicas de todos los elementos de los tres primeros periodos de la tabla periódica. 2.- Razonar cuales

Más detalles

ESTADOS DE LA MATERIA

ESTADOS DE LA MATERIA ESTADOS DE LA MATERIA M en C Alicia Cea Bonilla 1 Existen tres estados de la materia: sólido, líquido y gaseoso, dependiendo de la distancia entre sus partículas, de las fuerzas de atracción entre éstas

Más detalles

Conceptos Básicos (Relaciones de flujos)

Conceptos Básicos (Relaciones de flujos) Conceptos Básicos (Relaciones de flujos) 1. Una solución ideal contiene 0,1 x 10-3 m 3 de metanol y 0,9 x 10-3 m 3 de benceno se mueve a una velocidad media molar de 0,12 m/s. Si el flujo molar del benceno

Más detalles

REACCIONES QUÍMICAS MASA MOLES MOLÉCULAS ÁTOMOS ÁTOMOS. Factor de conversión N A = 6, partículas/mol

REACCIONES QUÍMICAS MASA MOLES MOLÉCULAS ÁTOMOS ÁTOMOS. Factor de conversión N A = 6, partículas/mol REACCIONES QUÍMICAS CANTIDAD DE MATERIA La cantidad de sustancia se puede expresar en gramos (masa), en moles, moléculas o átomos. Podemos pasar de unas unidades a otras utilizando el siguiente esquema:

Más detalles

Ejemplo. pie. lbf. pie = pie. Ejemplo

Ejemplo. pie. lbf. pie = pie. Ejemplo Calcular la densidad, peso específico, masa, y el peso de un cuerpo que ocupa un volumen de 00 (pie ) y su volumen específico es de 10 (pie /lb) La masa es: la densidad es: V 00 m = = = 0 v 10 ( lb) 1

Más detalles

UNIDAD IV GASES PROPIEDADES FISICAS DE LOS GASES

UNIDAD IV GASES PROPIEDADES FISICAS DE LOS GASES UNIDAD IV GASES PROPIEDADES FISICAS DE LOS GASES Muchas sustancias familiares para nosotros existen a temperatura y presión normal en forma gaseosa, éstas incluyen muchos sustancias elementales (H 2, N

Más detalles
Sitemap