UNIDAD DIDÁCTICA #5 CONTENIDO I. PRODUCTOS NOTABLES III. DIVISIÓN DE POLINOMIOS II. CUBO DE LA SUMA O DIFERENCIA DE DOS CANTIDADES


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIDAD DIDÁCTICA #5 CONTENIDO I. PRODUCTOS NOTABLES III. DIVISIÓN DE POLINOMIOS II. CUBO DE LA SUMA O DIFERENCIA DE DOS CANTIDADES"

Transcripción

1 UNIDAD DIDÁCTICA #5 CONTENIDO I. PRODUCTOS NOTABLES II. CUBO DE LA SUMA O DIFERENCIA DE DOS CANTIDADES III. DIVISIÓN DE POLINOMIOS IV. FACTORIZACIÓN DE EXPRESIONES ALGEBRAICAS

2 I. PRODUCTOS NOTABLES Los productos notables son multiplicaciones entre polinomios cuyos resultados pueden generalizarse para hallar la respuesta sin efectuar la operación. CUADRADO DE LA SUMA DE DOS TÉRMINOS Elevar al cuadrado una suma de dos términos puede efectuarse utilizando la propiedad distributiva así: (a + b) 2 = (a + b) (a +b) = a (a + b) b (a + b) = a 2 + ab + ab + b 2 (a + b) 2 = a 2 + 2ab + b 2 Cuadrado de la suma de dos términos El cuadrado de la suma de dos términos es igual al cuadrado del primer término, más el doble producto de ambos términos, mas el cuadrado del segundo término. Ejemplos: (2x + 5y) 2 = (2x) 2 + 2(2x)(5y) + (5y) 2 EJEMPLOS: 4x xy + 25y 2 a) (2 + x) 2 = (2) 2 + 2(2)(x) + (x) 2 = 4 + 4x + x 2 b) (6a + b) 2 = Cuadrado de la diferencia de dos términos a) (a - b) (a - b) = (a - b) 2 = a 2-2ab + b 2 b) El cuadrado de la diferencia de dos términos es igual al cuadrado del primer término menos el doble del primero por el segundo, mas el cuadrado del segundo término.

3 Ejemplos: c) (3 x) 2 = (3) 2-2(3)(x) + (x) 2 = 9 6x + x 2 (x 2y) 2 = (3x y) 2 = II. CUBO DE LA SUMA O DIFERENCIA DE DOS TERMINOS CUBO DE LA SUMA DE DOS TÉRMINOS Desarrollemos (a + b) 3 (a + b) 3 = (a + b) 2 (a + b) Por lo tanto: = (a 2 + 2ab +b 2 ) (a + b) = a 3 + a 2 b+2a 2 b + 2ab 2 + b 3 ) = a 3 + 3a 2 b + 3ab 2 + b 3 (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 Luego el cubo de la suma de dos términos es igual al cubo del primer término, más tres veces el cuadrado del primero por el segundo, más tres veces el primero por el cuadrado del segundo, más el cubo del segundo. EJEMPLOS: (4x + y) 3 = (4x) 3 + 3(4x) 2 (y) + 3(4x)(y) 2 (y) 3 = 64x 3 + 3(16x 2 )y + 12xy 2 + y 3 = 64x x 2 y + 12xy 2 + y 3

4 CUBO DE LA DIFERENCIA DE UN BINOMIO (a - b) 3 = (a - b) 2 (a - b) Ejemplos. = (a 2-2ab +b 2 ) (a - b) = a 3-3a 2 b + 3ab 2 - b 3 (x 2y) 3 = (x) 3-3(x) 2 (2y) + 3(x)(2y) 2 (2y) 3 = x 3-3x 2 (2y) + 3x(4y 2 ) 8y 3 = x 3-6x 2 y + 12xy 2-8y 3 III. DIVISIÓ N DE PÓLINÓMIÓS Para dividir polinomios se utiliza el proceso que se describe a continuación: 1 Ordenar los polinomios del dividendo y del divisor de mayor a menor grado dejando espacios cuando falte algún término. 2 Dividir el primer término del dividendo entre el primer término del divisor, el resultado es el primer término del cociente. 3 El término hallado del cociente se multiplica por el divisor y el producto se resta del dividendo. 4 El resultado del paso 3 es el nuevo dividendo, proceder entonces a repetir desde el paso 2. EJEMPLO: Dividir 4x 3 6x entre x - 2 Los polinomios deben estar ordenados en forma decreciente, y el polinomio dividendo debe estar completo. Ejemplo: 4x 3 6x 2 + 0x + 8 x 2 Dividendo divisor

5 EJEMPLO: Dividir 4x 3 6x entre x - 2 Primer paso: 4x 3 x = 4x 2 los exponentes se restan Multiplicamos 4x 2 por (x -2) 4x 3 6x 2 + 0x + 8 x 2-4x 3 +8x 2 4x 2 + 2x x 2 + 0x - 2x 2 + 4x 4x + 8-4x Por tanto: (4x 3 6x 2 + 8) (x 2) = 4x 2 2x + 4, residuo 16. CALCULAR: 2x 2-7x -17 entre x - 5 2x 2-7x - 17 x 5 2x x 2x + 3 3x 17-3x Por tanto (2x 2 7x 17) (x -5) = 2x +3, residuo -2. Calcular: 16x 3 + 8x 2 4x +2) (x 2) 16x 3 + 8x 2 4x + 2 x 2-16x x 2 16x x x 2-4x - 40x 2 +80x

6 76x x Por lo tanto (16x 3 + 8x 2 4x + 2) (x 2 2) = 16x x +76 y el residuo es 154. Ejercicio: 9x 2 15x x + 5-9x 2-15x 3x 10-30x x Por lo tanto (9x 2 15x + 25) (3x + 5) = 3x 10 y el residuo es 75. IV. FACTORIZACIÓN DE EXPRESIONES ALGEBRAICAS QUE ES FACTORIZAR? Es escribir una expresión como un producto de varios factores. Qué es un factor común? Es un factor que aparece en todos los términos de un polinomio. Factor Común Monomio Se basa en la propiedad recolectiva, o sea, la inversa de la distributiva. ax + ay = a(x + y) Factor común 3ax 2-5bx 2 = x 2 (3a 5b)

7 Factor común Pasos para extraer el factor común monomio de un polinomio 1- Escribir el MCD de los coeficientes numéricos de los términos del polinomio seguido de la o las letras comunes con su menor exponente. 2- El otro factor lo obtienes dividiendo cada término del polinomio por el factor común. Ejemplos: Descomponer en factores extrayendo el factor común. 4x 2 2x 3 y + 6xy 2 Encontrar el MCD de (4, 2, 6) El MCD de (4, 2, 6) = 2 Continuación Numérico: 2 Luego: factor común 2x Literal : x Por tanto: 4x 2-2x 3 y + 6xy 2 = 2x 4x 2 _ 2x 3 y + 6xy 2 2x 2x 2x = 2x (2x x 2 y + 3y 2 ) Ejercicio # 2 3x 2 y 2xy + 5x 2 y 2

8 Encontrar el MCD de (3, 2, 5) = 1, luego: Numérico: 1 Factor común 1 xy Literal: xy Po tanto: 3x 2 y 2xy + 5x 2 y 2 = xy 3x 2 y _ 2xy + 5x 2 y 2 xy xy xy = xy (3x 2 + 5xy)

9 HOJA DE EVALUACIÓN Aplica el producto indicado. a) (2x +1) 2 b) (2y+3) 2 c) (2t - 1) 2 d) (5x-3y) 2 e) (x + 3) 3 f) (3 + y 2 ) 3 g) (2t + 1) 3 h) (4x + y) 3 i) (2x + 3) 3 Encontrar el factor común de las siguientes expresiones: b) 90x 2 y 3 z; 45xy 2 c) 150a 2 b 2 c 3 ; 25abc; 50a 2 bc = d) 48x 2 y 3-24xy x 3 y = Realiza las siguientes divisiones de polinomios. a) (3x 3 2x 2 + 5x 12) (x 2-3x - 5) b) (4x 2 22x + 121) (2x 11)

10 BIBLIOGRAFÍA Santillana tercer ciclo, matemáticas estrategias Honduras

PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas

PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas que se resuelven siguiendo Reglas y Fórmulas específicas para cada caso y cuyo resultado puede ser escrito por simple inspección, es decir

Más detalles

Contenido. 1. Definiciones. 2. Operaciones Algebraicas 2.1 Suma y resta 2.2 Multiplicación 2.3 Productos Notables 2.4 Factorización 2.

Contenido. 1. Definiciones. 2. Operaciones Algebraicas 2.1 Suma y resta 2.2 Multiplicación 2.3 Productos Notables 2.4 Factorización 2. Contenido 1. Definiciones 1.1 Término algebraico 1.2 Expresión algebraica 1.3 términos semejantes 2. Operaciones Algebraicas 2.1 Suma y resta 2.2 Multiplicación 2.3 Productos Notables 2.4 Factorización

Más detalles

EJERCICIOS DE POLINOMIOS

EJERCICIOS DE POLINOMIOS EJERCICIOS DE POLINOMIOS NOMBRE:... Nº:... º....- Escribe el grado, el número de términos y el nombre (monomio, binomio, trinomio, polinomio) que recibe cada una de las siguientes expresiones algebraicas:

Más detalles

MONOMIOS Y POLINOMIOS

MONOMIOS Y POLINOMIOS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas y se representan por letras.

Más detalles

UNIDAD 4. POLINOMIOS. (PÁGINA 263)

UNIDAD 4. POLINOMIOS. (PÁGINA 263) UNIDAD 4. POLINOMIOS. (PÁGINA 263) LENGUAJE ALGEBRAICO Una expresión algebraica es aquella que combina: números, operaciones y letras. Ejemplos de expresiones algebraicas: 3 + x x 2 y x + y x 2 y LENGUAJE

Más detalles

Colegio La Salle Envigado FORMANDO EN VALORES PARA LA VIDA GUIA FACTORIZACION

Colegio La Salle Envigado FORMANDO EN VALORES PARA LA VIDA GUIA FACTORIZACION GUIA FACTORIZACION Esta guía tiene como objetivo afianzar los conocimientos teórico-prácticos en los diferentes casos de factorización, para ello se darán en esta guía algunos ejercicios de factorización

Más detalles

SERIE INTRODUCTORIA. REPASO DE ALGEBRA.

SERIE INTRODUCTORIA. REPASO DE ALGEBRA. SERIE INTRODUCTORIA. REPASO DE ALGEBRA. 1.- REDUCCION DE TÉRMINOS SEMEJANTES. Recuerde que los términos semejantes son aquellos que tienen las mismas letras con los mismos exponentes. Ejemplos: *7m; 5m

Más detalles

Partes de un monomio

Partes de un monomio Monomios Un monomio es una epresión algebraica en la que la únicas operaciones que afectan a las letras son la multiplicación y la potencia de eponente natural. Son monomios: NO son monomios: 1 yz 1 abc

Más detalles

Se dice que dos monomios son semejantes cuando tienen la misma parte literal

Se dice que dos monomios son semejantes cuando tienen la misma parte literal Expresiones algebraicas 1 MONOMIOS Conceptos Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural.

Más detalles

2. EXPRESIONES ALGEBRAICAS

2. EXPRESIONES ALGEBRAICAS 2. EXPRESIONES ALGEBRAICAS Tales como, 2X 2 3X + 4 ax + b Se obtienen a partir de variables como X, Y y Z, constantes como -2, 3, a, b, c, d y cobinadas utilizando la suma, resta, multiplicación, división

Más detalles

UNIDAD DOS FACTORIZACIÓN

UNIDAD DOS FACTORIZACIÓN UNIDAD DOS FACTORIZACIÓN Factorizar quiere decir descomponer en factores, los factores son divisores de una expresión que, multiplicados entre sí, dan como resultado la primera expresión. FACTOR COMÚN

Más detalles

TEMA 3. POLINOMIOS Y FRACCIONES ALGEBRAICAS. Ficha 0

TEMA 3. POLINOMIOS Y FRACCIONES ALGEBRAICAS. Ficha 0 Ficha 0 Un monomio es una expresión algebraica formada por el producto de un número, llamado coeficiente, por una o más variables con exponente natural o cero, llamadas parte literal. El grado es la suma

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS

UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS C u r s o : Matemática Material N 15 UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS GUÍA TEÓRICO PRÁCTICA Nº 1 EVALUACIÓN DE EXPRESIONES ALGEBRAICAS Evaluar una expresión algebraica consiste en sustituir

Más detalles

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las

Más detalles

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA. POLINOMIOS Y FRACCIONES ALGEBRAICAS.. Repaso de polinomios - Epresión algebraica. Valor numérico - Polinomios. Operaciones con polinomios.. Identidades notables - Cuadrado de una suma de una diferencia

Más detalles

CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA

CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA http:/// CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA DESARROLLA EN FORMA RESUMIDA CADA UNIDAD CON: I. GUIONES DE CONFERENCIAS II. FICHAS DE ESTUDIO III. LABORATORIOS DE EJERCICIOS Trata las unidades siguientes:

Más detalles

UNIDAD 5: ÁLGEBRA. Nacho Jiménez ANT ÍNDICE SIG

UNIDAD 5: ÁLGEBRA. Nacho Jiménez ANT ÍNDICE SIG UNIDAD 5: ÁLGEBRA Nacho Jiménez 0. Conceptos previos ÍNDICE 1. Para qué sirve el álgebra? 2. Expresiones algebraicas 2.1 Monomios 2.2 Suma y resta de monomios 2.3 Multiplicación de monomios 2.4 División

Más detalles

Expresiones algebraicas

Expresiones algebraicas Epresiones algebraicas Matemáticas I 1 Epresiones algebraicas Epresiones algebraicas. Monomios y polinomios. Monomios y polinomios. Una epresión algebraica es una combinación de letras, números y signos

Más detalles

POLINOMIOS En esta unidad aprenderás a:

POLINOMIOS En esta unidad aprenderás a: POLINOMIOS En esta unidad aprenderás a: Reconocer polinomios y calcular su valor numérico Realizar operaciones con polinomios. Manejar la regla de Ruffini y el teorema del resto para encontrar las raíces

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS Unidad didáctica 5 EXPRESIONES ALGEBRAICAS. POLINOMIOS. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones

Más detalles

Expresiones algebraicas

Expresiones algebraicas Polinomios Expresiones algebraicas Una expresión algebraica es cualquier combinación de números y letras relacionados por operaciones aritméticas: suma, resta, producto, división y potenciación. Ejemplos

Más detalles

Ejercicios... Julio Yarasca

Ejercicios... Julio Yarasca Ejercicios... Julio Yarasca 4 de junio de 2015 Capítulo 1 Productos Notables 1.1. Teoría Tenemos los siguientes productos notables 1. Binomio al cuadrado 2. Identidades de Lagrange 3. Diferencia de Cuadrados

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS

OBJETIVOS CONTENIDOS PROCEDIMIENTOS Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender el concepto de polinomio y otros asociados

Más detalles

I.E.S. Tierra de Ciudad Rodrigo Departamento de Matemáticas TEMA 6. POLINOMIOS

I.E.S. Tierra de Ciudad Rodrigo Departamento de Matemáticas TEMA 6. POLINOMIOS TEMA 6. POLINOMIOS Una expresión algebraica es un conjunto de letras y números unidos por los signos matemáticos. Las expresiones algebraicas surgen de traducir al lenguaje matemático enunciados en los

Más detalles

Factorización ecuación identidad condicional término coeficiente monomio binomio trinomio polinomio grado ax3

Factorización ecuación identidad condicional término coeficiente monomio binomio trinomio polinomio grado ax3 Factorización Para entender la operación algebraica llamada factorización es preciso repasar los siguientes conceptos: Cualquier expresión que incluya la relación de igualdad (=) se llama ecuación. Una

Más detalles

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma. FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto

Más detalles

24 = = = = = 12. 2

24 = = = = = 12. 2 UNIVERSIDAD MARIANO GÁLVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CENTRO UNIVERSITARIO DE VILLA NUEVA CURSO MATEMÁTICAS APLICADA I 015 Lic. Manuel

Más detalles

POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO

POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO Dado que los polinomios se utilizan para describir curvas de diferentes tipos, la gente los utiliza en el mundo real para dibujar curvas. Por ejemplo,

Más detalles

APUNTES DE FUNDAMENTOS DE MATEMATICA. CASO I: Cuando todos los términos de un polinomio tienen un factor común.

APUNTES DE FUNDAMENTOS DE MATEMATICA. CASO I: Cuando todos los términos de un polinomio tienen un factor común. FACTORIZACION DE POLINOMIOS. CASO I: Cuando todos los términos de un polinomio tienen un factor común. Cuando se tiene una expresión de dos o más términos algebraicos y si se presenta algún término común,

Más detalles

UNIDAD DE APRENDIZAJE III

UNIDAD DE APRENDIZAJE III MATEMÁTICAS I ALGEBRA Unidad de Aprendizaje III UNIDAD DE APRENDIZAJE III Saberes procedimentales Saberes declarativos Expresa un polinomio en sus factores primos A Concepto de factores primos algebraicos

Más detalles

Expresiones algebraicas

Expresiones algebraicas Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas

Más detalles

UNIDAD I FUNDAMENTOS BÁSICOS

UNIDAD I FUNDAMENTOS BÁSICOS República Bolivariana de Venezuela Universidad Alonso de Ojeda Administración Mención Gerencia y Mercadeo UNIDAD I FUNDAMENTOS BÁSICOS Elaborado por: Ing. Ronny Altuve Ciudad Ojeda, Mayo 2016 ÁLGEBRA Es

Más detalles

RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO

RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO OBJETIVO RECONOCER EL GRADO, EL TÉRMINO Y LOS COEICIENTES DE UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma de monomios, que son los términos del polinomio.

Más detalles

Ejercicio 1 Completa: Monomio Coeficiente Parte literal Grado

Ejercicio 1 Completa: Monomio Coeficiente Parte literal Grado Soluciones a los ejercicios de Álgebra, primera parte: Ejercicio 1 Completa: Monomio Coeficiente Parte literal Grado 3xz 3 xz 3 1x zy 1 4 abc 1 5 x 5 3 x zy 6 4 abc 6 x 1 Ejercicio Halla el valor numérico

Más detalles

FACULTAD DE INGENIERIA Y CIENCIAS BASICAS LOGICA Y PENSAMIENTO MATEMATICO GUIA DE FACTORIZACIÓN DOCENTE: IDALY MONTOYA A.

FACULTAD DE INGENIERIA Y CIENCIAS BASICAS LOGICA Y PENSAMIENTO MATEMATICO GUIA DE FACTORIZACIÓN DOCENTE: IDALY MONTOYA A. DESCOMPOSICION FACTORIAL Factorizar significa descomponer en dos o más componentes. Por ejemplo: 15= 3x 5 ; 7=3 x 9 ; 99 = 9 x 11 ; 6 = 3 x FACTORES: Se llaman factores o divisores de una gran expresión

Más detalles

LICEO Nº1 JAVIERA CARRERA 2012 MATEMATICA Benjamín Rojas F. FACTORIZACIÓN

LICEO Nº1 JAVIERA CARRERA 2012 MATEMATICA Benjamín Rojas F. FACTORIZACIÓN LICEO Nº1 JAVIERA CARRERA 2012 MATEMATICA Benjamín Rojas F. FACTORIZACIÓN Factorizar es transformar un número o una expresión algebraica en un producto. Ejemplos: Transformar en un producto el número 6

Más detalles

FACTORIZACION FACTORIZACIÓN. Factorizar un número consiste en expresarlo como producto de dos de sus divisores.

FACTORIZACION FACTORIZACIÓN. Factorizar un número consiste en expresarlo como producto de dos de sus divisores. -PA-0 FACTORIZACION V0 Página de 9 NOCION: FACTORIZACIÓN Factorizar un número consiste en epresarlo como producto de dos de sus divisores. Ejemplo: Factoriza 0 en dos de sus divisores :, es decir 0 = Y

Más detalles

Notas teóricas. a) Suma y resta Se agrupan los monomios del mismo grado y se opera.

Notas teóricas. a) Suma y resta Se agrupan los monomios del mismo grado y se opera. MATEMÁTICAS EJERCICIOS RESUELTOS DE POLINOMIOS POLINOMIOS A. Introducción Teoría B. Ejercicios resueltos B.. Sumas y restas B.. Multiplicación B.3. División B.4. Sacar factor común B.5. Simplificar fracciones

Más detalles

Apuntes de matemáticas 2º ESO Curso 2013-2014. Lenguaje algebraico.

Apuntes de matemáticas 2º ESO Curso 2013-2014. Lenguaje algebraico. Lenguaje algebraico. Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas

Más detalles

1. EXPRESIONES ALGEBRAICAS.

1. EXPRESIONES ALGEBRAICAS. TEMA 3: POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas

Más detalles

División de Polinomios. Ejercicios de división de polinomios. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx

División de Polinomios. Ejercicios de división de polinomios. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx División de Polinomios Ejercicios de división de polinomios www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 2007-2008 Contenido 1. Introducción 2 2. División de monomios 3 3. División

Más detalles

PREUNIVERSITARIO POPULAR FRAGMENTOS COMUNES

PREUNIVERSITARIO POPULAR FRAGMENTOS COMUNES Álgebra La palabra álgebra deriva del nombre del libro " escrito en el año 825 D.C. por el matemático y astrónomo musulmán. El álgebra es la rama de la matemática que estudia estructuras, relaciones y

Más detalles

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Y POLINOMIOS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Y POLINOMIOS EXPRESIONES ALGEBRAICAS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman VARIABLES, INCÓGNITAS o INDETERMINADAS

Más detalles

5. Producto de dos binomios de la forma: ( ax + c)( bx d )

5. Producto de dos binomios de la forma: ( ax + c)( bx d ) PRODUCTOS NOTABLES Y FACTORIZACIÓN. Productos Notables: Son polinomios que se obtienen de la multiplicación entre dos o más polinomios que poseen características especiales o expresiones particulares,

Más detalles

FACTORIZACION FACTORIZACIÓN. Factorizar un número consiste en expresarlo como producto de dos de sus divisores.

FACTORIZACION FACTORIZACIÓN. Factorizar un número consiste en expresarlo como producto de dos de sus divisores. Resolución Aprobación de Estudios No. 0-0 de Noviembre de 008 Código DANE No. 7900079 Nit: 8980- GU-PA-0 /07/08-V0 Página de 9 NOCION: FACTORIZACIÓN Factorizar un número consiste en epresarlo como producto

Más detalles

TEMA: 5 ÁLGEBRA 3º ESO

TEMA: 5 ÁLGEBRA 3º ESO TEMA: 5 ÁLGEBRA 3º ESO 1. MONOMIO Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. Ejemplo: x

Más detalles

5.- Potencia de 1 Un número racional elevado a 1 es igual a sí mismo.

5.- Potencia de 1 Un número racional elevado a 1 es igual a sí mismo. POTENCIAS DE EXPONENTE ENTERO Y BASE RACIONAL 1.- 2.- 3.- PROPIEDADES DE LAS POTENCIAS DE NÚMEROS RACIONALES Pulsa en las siguientes pestañas para analizar cada una de las propiedades de la multiplicación:

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas º ESO 1. Expresiones algebraicas En matemáticas es muy común utilizar letras para expresar un resultado general. Por ejemplo, el área de un b h triángulo es base por altura dividido por dos y se expresa

Más detalles

Se llama factores o divisores, a las expresiones algebraicas que multiplicadas entre sí, dan como producto la primera expresión.

Se llama factores o divisores, a las expresiones algebraicas que multiplicadas entre sí, dan como producto la primera expresión. FACTORIZACION Se llama factores o divisores, a las expresiones algebraicas que multiplicadas entre sí, dan como producto la primera expresión. Al proceso de encontrar los factores o divisores a partir

Más detalles

CURSO PROPEDEUTICO DEALGEBRA PARA BQFT QUÍMICO FARMACEÚTICO BIOTECNÓLOGO CURSO PROPEDEUTICO AGOSTO 2013 ELABORÓ ALEJANDRO JAIME CARRETO SOSA

CURSO PROPEDEUTICO DEALGEBRA PARA BQFT QUÍMICO FARMACEÚTICO BIOTECNÓLOGO CURSO PROPEDEUTICO AGOSTO 2013 ELABORÓ ALEJANDRO JAIME CARRETO SOSA QUÍMICO FARMACEÚTICO BIOTECNÓLOGO CURSO PROPEDEUTICO AGOSTO 201 ELABORÓ ALEJANDRO JAIME CARRETO SOSA 1 Operaciones entre Quebrados (Fracciones) Sumar quebrados o fracciones: se calcula el común denominador,

Más detalles

FACTORIZACIÓN DE POLINOMIOS GUIA DE NIVELACION 3 PERIODO

FACTORIZACIÓN DE POLINOMIOS GUIA DE NIVELACION 3 PERIODO FACTORIZACIÓN DE POLINOMIOS GUIA DE NIVELACION 3 PERIODO Recuerde que: 1. Factorizar una expresión algebraica consiste en escribirla como un producto. 2. Existen varios casos de factorización. Revisemos

Más detalles

El cuadrado de la suma de dos números es igual al cuadrado del primero más el cuadrado del segundo más el doble producto del primero por el segundo.

El cuadrado de la suma de dos números es igual al cuadrado del primero más el cuadrado del segundo más el doble producto del primero por el segundo. IDENTIDADES NOTABLES Definición Qué es una identidad notable? Es una identidad algebraica que, por su relevancia y por la gran cantidad de veces que se usa en las operaciones matemáticas, recibe el nombre

Más detalles

Coeficiente Parte literal Coeficiente Parte literal 5 x 6 am 2. El grado de un monomio es la suma de los exponentes de las letras que lo forman:

Coeficiente Parte literal Coeficiente Parte literal 5 x 6 am 2. El grado de un monomio es la suma de los exponentes de las letras que lo forman: 1 Monomios Un monomio es una expresión algebraica formada por: - una parte numérica, llamada coeficiente, y - una parte literal, formada por letras y sus exponentes. Coeficiente Parte literal Coeficiente

Más detalles

RESUMEN DE ALGEBRA. CONCEPTO: El pensador principal del algebra es Al-Hwarizmi; es de origen árabe.

RESUMEN DE ALGEBRA. CONCEPTO: El pensador principal del algebra es Al-Hwarizmi; es de origen árabe. RESUMEN DE ALGEBRA CONCEPTO: El pensador principal del algebra es Al-Hwarizmi; es de origen árabe. El álgebra es la rama del conocimiento de la matemática; es decir se desprende de ella. Estudia realidades

Más detalles

FACTORIZACIÓN 1. FACTOR COMUN:

FACTORIZACIÓN 1. FACTOR COMUN: FACTORIZACIÓN Factorizar una expresión algebraica consiste en escribirla como un producto. Cuando realizamos las multiplicaciones: a) 2x (x 2 3x + 2) = 2x 3 6x 2 + 4x b) (x + 7)(x + 5) = x 2 + 12x + 35

Más detalles

Bloque 1. Aritmética y Álgebra

Bloque 1. Aritmética y Álgebra Bloque 1. Aritmética y Álgebra 10. Polinomios 1. Expresiones algebraicas Una expresión algebraica es aquella en la que se utilizan letras, números y signos de operaciones para reflejar de forma generalizada

Más detalles

TEMA 4: EXPRESIONES ALGEBRAICAS.

TEMA 4: EXPRESIONES ALGEBRAICAS. TEMA 4: EXPRESIONES ALGEBRAICAS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. CURSO 2011-2012 Página 1 de 14 Profesor: Manuel González de León Curso

Más detalles

1. OPERATORIA ALGEBRAICA 1.1 TÉRMINOS SEMEJANTES

1. OPERATORIA ALGEBRAICA 1.1 TÉRMINOS SEMEJANTES MATEMÁTICA MÓDULO 1 Eje temático: Álgebra 1. OPERATORIA ALGEBRAICA 1.1 TÉRMINOS SEMEJANTES Se denominan términos semejantes a aquellos que tienen la misma parte literal. Por ejemplo: -2a 2 b y 5a 2 b son

Más detalles

Uniboyacá GUÍA DE APRENDIZAJE NO 7. Psicología e Ingeniería Ambiental

Uniboyacá GUÍA DE APRENDIZAJE NO 7. Psicología e Ingeniería Ambiental Uniboyacá GUÍA DE APRENDIZAJE NO 7 1. IDENTIFICACIÓN Programa académico Psicología e Ingeniería Ambiental Actividad académica o curso Matemáticas básicas Semestre Segundo de 2012 Actividad de aprendizaje

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio TRABAJO PRÁCTICO Nº 5. MONOMIOS Y POLINOMIOS TEORÍA Y PRÁCTICA Monomios Un monomio es una expresión algebraica formada por: - una parte numérica, llamada coeficiente, y - una parte literal, formada por

Más detalles

UNIDAD DE APRENDIZAJE I

UNIDAD DE APRENDIZAJE I UNIDAD DE APRENDIZAJE I Saberes procedimentales Interpreta y utiliza correctamente el lenguaje simbólico para el manejo de expresiones algebraicas. 2. Identifica operaciones básicas con expresiones algebraicas.

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Una epresión algebraica es aquella en la que se operan números conocidos y números desconocidos representados por las letras a, b, c,, y, z,..., que se denominan

Más detalles

Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5

Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5 Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1 POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS COCIENTE DE MONOMIOS El cociente de un monomio entre otro monomio de grado igual

Más detalles

y 2 z Es la expresión común que tienen todos los términos de una expresión algebraica.

y 2 z Es la expresión común que tienen todos los términos de una expresión algebraica. ENCUENTRO # 12 TEMA:Factorizaciones CONTENIDOS: 1. Factor común 2. Factor común por agrupamiento 3. Diferencia de cuadrados 4. Suma o Diferencia de Cubos Ejercicio Reto 1. Si a a = 2, el valor de a aaa+1

Más detalles

GUÍA DE APRENDIZAJE. PROCESO: Prestación del Servicio / Educación Superior

GUÍA DE APRENDIZAJE. PROCESO: Prestación del Servicio / Educación Superior GUÍA UNIDAD No. 04 Programa: Procesos Aduaneros Semestre: Primero 2012 Asignatura: Matemáticas Básicas Nombre Unidad: Factorización Subtemas: Casos de factorización Metodología de Formación: Presencial

Más detalles

POLINOMIOS Y FRACCIONES ALGEBRAICAS

POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS Monomio: Monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. 2x

Más detalles

DESARROLLO. a r a s = ar s

DESARROLLO. a r a s = ar s ENCUENTRO # 11 TEMA:Operaciones con polinomios CONTENIDOS: 1. División de polinomios. DESARROLLO Ejercicio Reto 1. El resultado de n 4 n 1 es: A) 1 B) 1 n 1 B)4 n 1 D) 4 E) 1 4 4 4 4 4 n 1 4 2. Si para

Más detalles

La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes.

La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes. Suma de monomios Sólo podemos sumar monomios semejantes. La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes. ax n + bx n = (a + b)x

Más detalles

Matemática I. Descomposición en factores. Ing. Santiago Figueroa Lorenzo Correo electrónico:

Matemática I. Descomposición en factores. Ing. Santiago Figueroa Lorenzo Correo electrónico: Matemática I Descomposición en factores Ing. Santiago Figueroa Lorenzo Correo electrónico: santiagofigueroalorenzo@gmail.com Temas Primera Unidad: Elementos Algebraicos Tema 1: Principales casos de factorización

Más detalles

Álgebra Intermedia. Prof. Nilsa I. Toro Catedrática Recinto Universitario de Mayagüez Instituto de Verano 2006 AFAMaC

Álgebra Intermedia. Prof. Nilsa I. Toro Catedrática Recinto Universitario de Mayagüez Instituto de Verano 2006 AFAMaC Álgebra Intermedia Prof. Nilsa I. Toro Catedrática Recinto Universitario de Mayagüez Instituto de Verano 006 AFAMaC Semana #1: 11 al 16 de junio de 006 Polinomios Definiciones: 1. Un monomio en la variable

Más detalles

ax 3 -bx 2 = x 2 (ax-b) 2b 5 -b 3 = b 3 (2b 2-1)

ax 3 -bx 2 = x 2 (ax-b) 2b 5 -b 3 = b 3 (2b 2-1) CPU Calle Mercado # 555 Teléfono 3 366191 FACTORIZACIÓN Caso I: Factor Común Cómo Reconocer: Existe un factor común en todos los términos. Los números pueden factorizarse en este caso si existe máximo

Más detalles

1. FACTOR COMUN MONOMIO :

1. FACTOR COMUN MONOMIO : Área de IPA. CONTENIDO 1. NOCION :. FACTORIZACIÓN Factorizar un número consiste en expresarlo como producto de dos de sus divisores. Ejemplo : Factoriza 0 en dos de sus divisores :, es decir 0 = Y en álgebra,

Más detalles

Expresiones algebraicas

Expresiones algebraicas Expresiones algebraicas Una expresión algebraica es una combinación de letras y números relacionadas por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las

Más detalles

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 1º ESO. (2ª parte)

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 1º ESO. (2ª parte) TRABAJO DE MATEMÁTICAS PENDIENTES DE 1º ESO. (2ª parte) NÚMEROS RACIONALES REDUCCIÓN DE FRACCIONES AL MISMO DENOMINADOR Para reducir varias fracciones al mismo denominador se siguen los siguientes pasos:

Más detalles

Un monomio es el producto indicado de un número por una o varias letras GRADO 4º

Un monomio es el producto indicado de un número por una o varias letras GRADO 4º TEMA. POLINOMIOS OPERACIONES. MONOMIOS Un monomio es el producto indicado de un número por una o varias letras GRADO º COEFICIENTE PARTE LITERAL. VALOR NUMÉRICO DE UN MONOMIO Es el resultado que se obtiene

Más detalles

TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO

TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO 1. División de polinomios Dados dos polinomios P (el dividendo) y D (el divisor), dividir P entre D es encontrar dos polinomios Q (el cociente)

Más detalles

Factorización de Polinomios. Profesora Ericka Salas González

Factorización de Polinomios. Profesora Ericka Salas González Factorización de Polinomios Profesora Ericka Salas González 19 de marzo de 2006 Índice general 0.1. QUE ES FACTORIZAR UN POLINOMIO..... 2 0.1.1. Factor............................ 2 0.1.2. Factorizar..........................

Más detalles

FACTORIZACIÓN I # DE FACTORES PRIMOS POLINOMIO FACTORIZADO. multiplicación (x + 1) (x + 3) = x 2 + 4x + 3. P(x, y, z) = (x + y)(x - y)z 2 x 3

FACTORIZACIÓN I # DE FACTORES PRIMOS POLINOMIO FACTORIZADO. multiplicación (x + 1) (x + 3) = x 2 + 4x + 3. P(x, y, z) = (x + y)(x - y)z 2 x 3 I Es el proceso que consiste en transportar un polinomio racional entero en una multiplicación de dos o mas polinomios de grados mayores o iguales a uno, llamado factores: multiplicación (x + 1) (x + 3)

Más detalles

1. Factor Común. Fundación Uno. Ejercicio Reto. ENCUENTRO # 12 TEMA:Factorizaciones CONTENIDOS: 1. Factor común. 2. Factor común por Agrupamiento

1. Factor Común. Fundación Uno. Ejercicio Reto. ENCUENTRO # 12 TEMA:Factorizaciones CONTENIDOS: 1. Factor común. 2. Factor común por Agrupamiento ENCUENTRO # 12 TEMA:Factorizaciones CONTENIDOS: 1. Factor común 2. Factor común por Agrupamiento 3. Diferencia de cuadrados 4. Suma o Diferencia de Cubos Ejercicio Reto 1. Si a a = 2, el valor de a aaa+1

Más detalles

Curs MAT CFGS-18

Curs MAT CFGS-18 Curs 2015-16 MAT CFGS-18 Factorización de un polinomio Sacar factor común Consiste en aplicar la propiedad distributiva: a b + a c + a d = a (b + c + d) Descomponer en factores sacando factor común y hallar

Más detalles

Matemática I. Mínimo Común Múltiplo. Ing. Santiago Figueroa Lorenzo Correo:

Matemática I. Mínimo Común Múltiplo. Ing. Santiago Figueroa Lorenzo Correo: Matemática I Mínimo Común Múltiplo Ing. Santiago Figueroa Lorenzo Correo: urural.ingenierosantiago@gmail.com Temas Primera Unidad: Elementos Algebraicos Tema 3: Mínimo Común Múltiplo Mínimo Común Múltiplo

Más detalles

Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios.

Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios. Productos notables Sabemos que se llama producto al resultado de una multiplicación. También sabemos que los valores que se multiplican se llaman factores. Se llama productos notables a ciertas expresiones

Más detalles

Contenido: 1. Definición y clasificación. Polinomios.

Contenido: 1. Definición y clasificación. Polinomios. Polinomios. Contenido:. Definición y clasificación.. Operaciones.. Simplificación. 4. Productos notables.. Factorización. 6. Completar cuadrados. 7. Nociones de despeje.. Definición y clasificación Definición.

Más detalles

Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales Ejercicios Orden y valor absoluto...

Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales Ejercicios Orden y valor absoluto... ÍNDICE Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales... 3 Ejercicios... 5 Orden y valor absoluto... 6 Ejercicios... 7 Suma de números reales... 9 Reglas

Más detalles

TEMA 5. FACTORIZACIÓN DE POLINOMIOS.

TEMA 5. FACTORIZACIÓN DE POLINOMIOS. TEMA 5. FACTORIZACIÓN DE POLINOMIOS. 1. SACAR FACTOR COMÚN Cuando todos los términos de un polinomio, P(x), son múltiplos de un mismo monomio, M(x), podemos extraer M(x) como factor común. Por ejemplo:

Más detalles

3º ESO POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS

3º ESO POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS º ESO POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. POLINOMIOS 1.- POLINOMIOS Una expresión algebraica está formada por números y letras asociados por medio de las operaciones aritméticas (suma, resta, multiplicación,

Más detalles

Es una división de polinomios por el método de coeficientes separados.

Es una división de polinomios por el método de coeficientes separados. Baldor Ejercicio 58 - #13 Dividir por coeficientes separados: entre Es una división de polinomios por el método de coeficientes separados. Procedimiento general para la división de polinomios por el método

Más detalles

Calcular el cociente y el resto en las siguientes divisiones: 6x 3 + 5x 2 9x 3x 2. (b)

Calcular el cociente y el resto en las siguientes divisiones: 6x 3 + 5x 2 9x 3x 2. (b) MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I o Bachillerato Internacional. Grupo I. Curso 2009/200. Hoja de ejercicios III Polinomios EJERCICIO Calcular el cociente y el resto en las siguientes divisiones:.

Más detalles

PRODUCTOS NOTABLES. Definición: son aquellos productos cuyo desarrollo se conocen fácilmente por simple observación. Y son:

PRODUCTOS NOTABLES. Definición: son aquellos productos cuyo desarrollo se conocen fácilmente por simple observación. Y son: PRODUCTOS NOTABLES Definición: son aquellos productos cuyo desarrollo se conocen fácilmente por simple observación. Y son: Cuadrado de la suma de dos cantidades Cuadrado de la diferencia de dos cantidades

Más detalles

CUADERNO DE TRABAJO 1

CUADERNO DE TRABAJO 1 1 COLEGIO UNIVERSITARIO DE CARTAGO ELECTRÓNICA MATEMÁTICA ELEMENTAL EL-103 CUADERNO DE TRABAJO 1 Elaborado por: Msc. Adriana Rivera Meneses II Cuatrimestre 2014 2 ESTIMADO ESTUDIANTE: El objetivo del siguiente

Más detalles

2. A continuación se presentan un grupo de polinomios y monomios:

2. A continuación se presentan un grupo de polinomios y monomios: República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Unidad Educativa Colegio Roraima Cátedra Matemática Profesora María Eugenia Benítez 2do año Guía 3 1. Efectúa los siguientes

Más detalles

RESUMEN ALGEBRA BÁSICA

RESUMEN ALGEBRA BÁSICA RESUMEN ALGEBRA BÁSICA TERMINO ALGEBRAICO: Es una expresión matemática que consta de un producto (o cociente) de un número con una variable elevado a un exponente (o con varias variables). TÉRMINO ALGEBRAICO

Más detalles

DESARROLLO D) 4. para a = 1 y b = 2 (a 2 + b 2 )(2a 3b 2 ) es:

DESARROLLO D) 4. para a = 1 y b = 2 (a 2 + b 2 )(2a 3b 2 ) es: ENCUENTRO # 10 TEMA:Operaciones con polinomios CONTENIDOS: 1. Multiplicación de polinomios. 2. Productos notables. DESARROLLO Ejercicio Reto x 2 1. Al racionalizar el denominador de la fracción 3 + se

Más detalles

CONCEPTOS GENERALES SOBRE LA FACTORIZACIÓN: Qué es factorizar o factorear un polinomio?

CONCEPTOS GENERALES SOBRE LA FACTORIZACIÓN: Qué es factorizar o factorear un polinomio? CONCEPTOS GENERALES SOBRE LA FACTORIZACIÓN: Qué es factorizar o factorear un polinomio? Factorizar o Factorear significa "transformar en multiplicación" (o "producto", como también se le llama a la multiplicación).

Más detalles

POLINOMIOS. OPERACIONES CON POLINOMIOS: 1.- Suma y resta de polinomios: Sumando o restando los monomios que sean semejantes.

POLINOMIOS. OPERACIONES CON POLINOMIOS: 1.- Suma y resta de polinomios: Sumando o restando los monomios que sean semejantes. Recordemos previamente algunos conceptos: POLINOMIOS MONOMIO: expresión algebraica de la forma a x n, siendo a un número real y n un número natural. ( a se llama coeficiente, x n es la parte literal y

Más detalles

Lic. Manuel de Jesús Campos Boc

Lic. Manuel de Jesús Campos Boc UNIVERSIDAD MARIANO GÁLVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CENTRO UNIVERSITARIO DE VILLA NUEVA CURSO MATEMÁTICAS APLICADA I 015 Lic. Manuel

Más detalles

Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Sec. 5.1: Polinomios

Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Sec. 5.1: Polinomios Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Sec. 5.1: Polinomios Prof. Caroline Rodríguez Martínez Polinomios Un polinomio es un solo término o la suma de dos o más términos se compone

Más detalles

Factorización de polinomios. Profa. Anneliesse Sánchez y Profa. Caroline Rodriguez Departamento de Matemáticas Universidad de Puerto Rico

Factorización de polinomios. Profa. Anneliesse Sánchez y Profa. Caroline Rodriguez Departamento de Matemáticas Universidad de Puerto Rico Factorización de polinomios Profa. Anneliesse Sánchez y Profa. Caroline Rodriguez Departamento de Matemáticas Universidad de Puerto Rico Definición Cuando multiplicamos expresiones polinómicas, cada expresión

Más detalles

FACTORIZACIÓN MÉTODO DE FACTORIZACIÓN A. FACTOR COMÚN MONOMIO

FACTORIZACIÓN MÉTODO DE FACTORIZACIÓN A. FACTOR COMÚN MONOMIO Es el proceso que consiste en transportar un polinomio racional entero en una multiplicación de dos o más polinomios de grados mayores o iguales a uno, llamado factores: multiplicación (x + 1) (x + 3)

Más detalles

MATEMÁTICAS ÁLGEBRA (TIC)

MATEMÁTICAS ÁLGEBRA (TIC) COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS ÁLGEBRA (TIC) GRADO:8 O A, B DOCENTE: Nubia E. Niño C. FECHA: 23 / 02 / 15 GUÍA UNIFICADA: # 1 5; # 1-6 y 1-7 DESEMPEÑOS:

Más detalles
Sitemap