Determinación del equivalente eléctrico del calor


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Determinación del equivalente eléctrico del calor"

Transcripción

1 Determinación del equivalente eléctrico del calor Julieta Romani Paula Quiroga María G. Larreguy y María Paz Frigerio Laboratorio de Física III 2002 Facultad de Ingeniería Ciencias Exactas y Naturales Universidad Favaloro Buenos Aires Argentina Mediante este experimento logramos determinar el valor del equivalente eléctrico del calor. Transformamos la energía eléctrica de una resistencia en energía calórica sumergiéndola en agua dentro de un calorímetro. A partir del calor que recibe el agua en calorías y la energía que proporciona la resistencia eléctrica en joules podemos conocer el equivalente eléctrico del calor. Introducción Por definición la caloría es la cantidad de energía térmica necesaria para elevar la temperatura de un gramo de agua un grado Celsius desde 1.5 ºC. Los experimentos de Joule demostraron que no sólo la energía térmica permite elevar la temperatura sino que también cualquier otra forma de energía suministrada a un sistema puede realizar el mismo efecto. Con estos experimentos Joule obtuvo el equivalente mecánico del calor J e es decir el número de Joules necesarios para aumentar en un grado la temperatura de un gramo de agua mediante la utilización de trabajo mecánico. En este trabajo medimos este equivalente utilizando la transformación de energía eléctrica en térmica. Si introducimos en un recipiente con agua a cierta temperatura una resistencia eléctrica o una lamparita y aplicamos una diferencia de potencial V entre sus bornes observamos el paso de una intensidad de corriente I. La potencia consumida en la resistencia de la lamparita es La energía eléctrica W generada al cabo de un tiempo t es 1) 2) Esta energía se transforma en calor. La cantidad de calor generado en el tiempo t se invierte en elevar no sólo la temperatura del agua sino también la de las paredes del recipiente y otros elementos del calorímetro. Otra parte del calor es emitido por radiación al exterior. Si la temperatura inicial es T 1 y la final T 2 entonces

2 ) donde C 0 es el calor específico del agua a cal/g K) m la masa en gramos del agua y k el llamado equivalente en agua del calorímetro 1) masa de agua capaz de absorber igual cantidad de calor que el calorímetro para la misma elevación de temperatura. No consideramos la emisión de calor por radiación. Más adelante comprobamos que podemos dejarla de lado ya que no es significativa. El equivalente J e del calor es ) y su expresión se obtiene dividiendo la ecuación 2) por la ). Experimento En primer lugar buscamos el valor del equivalente en agua del calorímetro k. En el apéndice de este trabajo se encuentran las ecuaciones necesarias para su cálculo. Utilizamos una balanza para pesar el agua que agregábamos al calorímetro. Mezclamos distintas cantidades de agua fría y caliente repetidas veces dentro del calorímetro y esperamos a que el sistema se estabilizara. Con un termómetro de mercurio medimos la temperatura final que alcanza el mismo en el equilibrio. De esta forma obtuvimos k que representa una masa de agua cuya capacidad calorífica es igual a la del conjunto constituido por el termómetro el recipiente y la lamparita. Figura 1. Diseño experimental para medir la constante eléctrica del calor a partir de la potencia disipada por una lamparita y el calor recibido por el agua dentro del calorímetro. Una vez que contamos con el valor de k pudimos llevar a cabo nuestro experimento principal. Para ello necesitamos de una fuente de tensión en nuestro caso con 12 volt y un amperímetro para medir la corriente que circula por la resistencia eléctrica. Nuestra resistencia fue

3 una lamparita de 100 W. Proporcionamos a la lamparita una potencia de aproximadamente 29.2 W. En la figura 1 se ilustra la disposición de los elementos. Agremos 220 ml de agua 210 g) al calorímetro y medimos su temperatura con el termómetro para distintos intervalos de tiempo determinados por un cronómetro. Volvimos a repetir el experimento anterior agregando tinta negra al agua de forma tal que no se perdiera calor por radiación. Resultados El valor que obtuvimos para la masa equivalente en agua del calorímetro fue de 20. g pero con un error demasiado grande. Decidimos entonces realizar todos los cálculos necesarios a partir del valor que informa el fabricante de 2 g. Comparamos la velocidad de transferencia del calor temperatura versus tiempo) del agua en el calorímetro con la lamparita antes y después de agregarle tinta. Realizamos el gráfico de la figura 2. Queremos ver si es significativa la pérdida de calor por radiación fuera del calorímetro cuando el agua está clara. Temperatura T [ºC] velocidad 0009 ± 0000 velocidad 0009 ± Tiempo t [seg] Agua sin tinta Agua con tinta Figura 2. Gráfico comparativo del aumento de la temperatura del agua en función del tiempo cuando está pura y cuando tiene tinta para evitar que el calor se disipe por radiación fuera del calorímetro. A partir de la ecuación ) realizamos el gráfico de la potencia disipada por la lamparita en función del calor recibido por el agua figura ) y obtuvimos de la pendiente de la recta el valor del equivalente eléctrico del calor.

4 W.2 J/cal Q W [J] Q [cal] Figura. Gráfico del trabajo eléctrico W en función del calor Q del agua para la obtención del equivalente eléctrico del calor J e. Obtuvimos J e 2 J/cal ± 01 J/cal Obtuvimos un valor de 2 J/cal ± 01 J/cal para el equivalente eléctrico del calor. Utilizamos también en los cálculos el valor para la masa equivalente en agua del calorímetro que obtuvimos experimentalmente. En este caso J e 0 J/cal ± 007 J/cal. Parece ser un valor más preciso sin embargo el valor tabulado 2) de la constante eléctrica del calor J e 1 J/cal no cae dentro del intervalo. Podemos ver que usando la masa equivalente en agua del calorímetro proporcionada por el fabricante el resultado que obtuvimos es correcto. Conclusiones El método que utilizamos para calcular la masa equivalente en agua del calorímetro es muy inestable. Por esta razón decidimos realizar los cálculos a partir del valor que proporciona el fabricante. De todas formas usamos el valor promedio de 20. g obtenido por nuestro método para hacer una comparación. Resultó que con nuestro valor la constante eléctrica del calor sería de J e 0 J/cal ± 007 J/cal. Otro experimento que descartamos fue el de agregarle tinta al agua. No sólo vimos que la velocidad de transferencia de calor entre la lamparita y el agua no variaba en uno u otro caso o por lo menos no había una diferencia notable ni significativa) sino que realizar los cálculos con este tipo de agua es dificultoso ya que el calor específico de la misma no se puede determinar fácilmente. Finalmente a partir de la ecuación ) y con cuadrados mínimos de los datos experimentales obtuvimos un valor para la constante eléctrica del calor de 2 J/cal con un error absoluto de 01 J/cal que concuerda bien con el valor aceptado de 1 J/cal.

5 - ; ) 9 ) Referencias 1) S. Gil y E. Rodríguez Física re-creativa Prentice Hall Buenos Aires ) M. Zemansky Calor y termodinámica Aguilar Madrid 197. Apéndice El calorímetro participa como parte integrante en los procesos de transferencia de calor que se realizan en él por eso es importante caracterizar su comportamiento térmico. Si se suministra una cantidad Q de calor al sistema la temperatura del calorímetro aumenta en una cantidad T que se relacionan de la siguiente manera $ % & $ $ % & $! "#! "# donde c agua es el calor específico del agua c term el calor específico del termómetro y c xx el calor específico del recipiente la lamparita y otros componentes que pueda tener el calorímetro. Las masas correspondientes son m agua m term y m xx. Generalmente c term y c xx son desconocidos. 1 a) La ecuación 1 a) puede agruparse también de la siguiente forma / 0 12 / $ % & $ $ % & $ $ % & $ $ % & $ $ % & $ 2 a) Como el término entre paréntesis en la primer expresión de la ecuación 2 a) para un calorímetro dado es una constante con dimensión de masa se puede reemplazar por una constante k designada como el equivalente en agua del calorímetro. Para determinar el valor de k experimentalmente mezclamos dos volúmenes de agua a distintas temperaturas una masa de agua fría m 1 a temperatura T 1 y otra masa de agua caliente m 2 a temperatura T 2. Los colocamos dentro del calorímetro junto a los componentes del mismo. El sistema llega en el equilibrio térmico a una temperatura T f. Por la conservación de las energías se tiene a) de donde 9 a) El método que proporciona la ecuación a) es bastante inestable es decir produce grandes errores para pequeñas alteraciones de los valores. Para minimizar los errores sistemáticos conviene partir de una decenas debajo de la temperatura ambiente y procurar que la temperatura final esté una cantidad similar de grados por arriba de la temperatura ambiente.

Práctica No 17. Determinación experimental del equivalente eléctrico del calor

Práctica No 17. Determinación experimental del equivalente eléctrico del calor Práctica No 17 Determinación experimental del equivalente eléctrico del calor 1. Objetivo general: Determinación experimental del equivalente eléctrico utilizando el método de trabajo mecánico. 2. Marco

Más detalles

Actividad V.53 Transiciones de fases Calor latente de transformación

Actividad V.53 Transiciones de fases Calor latente de transformación Actividad V.53 Transiciones de fases Calor latente de transformación Objetivo Estudio de transiciones de fase líquido vapor y sólido líquido. Medición de los calores latentes de evaporación y de fusión

Más detalles

Carga y descarga de capacitores

Carga y descarga de capacitores Carga y descarga de capacitores Autores Frigerio, Paz La Bruna,Gimena Larreguy, María Romani, Julieta mapaz@vlb.com.ar labrugi@yahoo.com merigl@yahoo.com julietaromani@hotmail.com Laboratorio de Física

Más detalles

14. ENTALPÍA DE FUSIÓN DEL HIELO

14. ENTALPÍA DE FUSIÓN DEL HIELO 14. ENTALPÍA DE FUSIÓN DEL HIELO OBJETIVO Determinar la entalpía de fusión del hielo, H f, utilizando el método de las mezclas. Previamente, ha de determinarse el equivalente en agua del calorímetro, K,

Más detalles

Dos experimentos para estudiar el efecto Leidenfrost

Dos experimentos para estudiar el efecto Leidenfrost Dos experimentos para estudiar el efecto Leidenfrost Julieta Romani, Paula Quiroga, María G. Larreguy y María Paz Frigerio julietaromani@hotmail.com, comquir@ciudad.com.ar, merigl@yahoo.com.ar, mapaz@vlb.com.ar

Más detalles

13. DETERMINACIÓN DEL EQUIVALENTE MECÁNICO DEL CALOR

13. DETERMINACIÓN DEL EQUIVALENTE MECÁNICO DEL CALOR 13. DETERMINACIÓN DEL EQUIVALENTE MECÁNICO DEL CALOR OBJETIVO El objetivo de la práctica es la determinación del equivalente mecánico J de la caloría. Para obtenerlo se calcula el calor absorbido por una

Más detalles

QUE ES Y COMO MEDIR AL EFECTO LEIDENFROST?

QUE ES Y COMO MEDIR AL EFECTO LEIDENFROST? QUE ES Y COMO MEDIR AL EFECTO LEIDENFROST? Nadia Barreiro, Cecilia Laborde Facultad de ciencias Exactas y Naturales Universidad de Buenos Aires, Abril de 2009 El objetivo de este trabajo fue estudiar un

Más detalles

UNIVERSIDAD NACIONAL DEL CALLAO

UNIVERSIDAD NACIONAL DEL CALLAO UNIVERSIDAD NACIONAL DEL CALLAO Facultad de Ingeniería Química Escuela Profesional de Ingeniería Química CALORIMETRIA, DETERMINACION DE CAPACIDAD CALORIFICA DEL CALORIMETRO ( TERMO ) CURSO : FISICO QUIMICA

Más detalles

Introducción al calor y la luz

Introducción al calor y la luz Introducción al calor y la luz El espectro electromagnético es la fuente principal de energía que provee calor y luz. Todos los cuerpos, incluído el vidrio, emiten y absorben energía en forma de ondas

Más detalles

PRÁCTICA 5. CALORIMETRÍA

PRÁCTICA 5. CALORIMETRÍA PRÁCTICA 5. CALORIMETRÍA INTRODUCCIÓN Al mezclar dos cantidades de líquidos a distinta temperatura se genera una transferencia de energía en forma de calor desde el más caliente al más frío. Dicho tránsito

Más detalles

TERMODINÁMICA y FÍSICA ESTADÍSTICA I

TERMODINÁMICA y FÍSICA ESTADÍSTICA I TERMODINÁMICA y FÍSICA ESTADÍSTICA I Tema 3 - CALORIMETRÍA Y TRANSMISIÓN DEL CALOR Capacidad calorífica y su medida. Calor específico. Calor latente. Transmisión del calor. Conductividad térmica. Ley de

Más detalles

Comparación entre curvas de calentamiento teóricas y experimentales

Comparación entre curvas de calentamiento teóricas y experimentales Comparación entre curvas de calentamiento teóricas y experimentales Práctica no pautada de Laboratorio, Física experimental II, 9 Larregain, Pedro pedrolarregain@yahoo.com Machado, Alejandro machado.alejandro@yahoo.com

Más detalles

ENERGÍA INTERNA PARA GASES NO IDEALES.

ENERGÍA INTERNA PARA GASES NO IDEALES. DEPARTAMENTO DE FISICA UNIERSIDAD DE SANTIAGO DE CHILE ENERGÍA INTERNA PARA GASES NO IDEALES. En el caso de los gases ideales o cualquier cuerpo en fase no gaseosa la energía interna es función de la temperatura

Más detalles

INTERCAMBIO MECÁNICO (TRABAJO)

INTERCAMBIO MECÁNICO (TRABAJO) Colegio Santo Ángel de la guarda Física y Química 4º ESO Fernando Barroso Lorenzo INTERCAMBIO MECÁNICO (TRABAJO) 1. Un cuerpo de 1 kg de masa se encuentra a una altura de 2 m y posee una velocidad de 3

Más detalles

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B TECNOLOGÍA. Instrucciones:

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B TECNOLOGÍA. Instrucciones: PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B TECNOLOGÍA DATOS DEL ASPIRANTE Apellidos: CALIFICACIÓN PRUEBA Nombre: D.N.I. o Pasaporte: Fecha de nacimiento: / / Instrucciones: Lee atentamente

Más detalles

Parte II: Ensayos físicos de Caracterización de Materiales Procedimientos de ensayo para caracterizar el comportamiento físico de los Materiales

Parte II: Ensayos físicos de Caracterización de Materiales Procedimientos de ensayo para caracterizar el comportamiento físico de los Materiales Tema 2: Propiedades físicas y Ensayos. Parte I: Propiedades físicas de los Materiales Comportamiento de los materiales frente a acciones físicas exteriores Parte II: Ensayos físicos de Caracterización

Más detalles

13. DETERMINACIÓN DEL EQUIVALENTE MECÁNICO DEL CALOR

13. DETERMINACIÓN DEL EQUIVALENTE MECÁNICO DEL CALOR 13. DETERMINACIÓN DEL EQUIVALENTE MECÁNICO DEL CALOR OBJETIVO El objetivo de la práctica es la determinación del equivalente mecánico J de la caloría. Para obtenerlo se calcula el calor absorbido por una

Más detalles

Objetivo Docente del Tema 4:

Objetivo Docente del Tema 4: Tema 4: Ensayos físicos de Caracterización de Materiales. 1. Ensayos dimensionales. 2. Ensayos de materiales porosos: balanza hidrostática y Porosimetría. 3. Dilatometría y calorimetría. 4. Caracterización

Más detalles

Calibración del termómetro

Calibración del termómetro Calibración del termómetro RESUMEN En esta práctica construimos un instrumento el cual fuera capaz de relacionar la temperatura con la distancia, es decir, diseñamos un termómetro de alcohol, agua y gas

Más detalles

Determinación del calor latente de fusión del hielo

Determinación del calor latente de fusión del hielo Determinación del calor latente de usión del hielo Apellidos, nombre Atarés Huerta, Lorena (loathue@tal.upv.es) Departamento Centro Departamento de Tecnología de Alimentos ETSIAMN (Universidad Politécnica

Más detalles

DESCRIPCIÓN GENÉRICA DE UNA INSTALACIÓN DE ENERGÍA SOLAR TÉRMICA

DESCRIPCIÓN GENÉRICA DE UNA INSTALACIÓN DE ENERGÍA SOLAR TÉRMICA DESCRIPCIÓN GENÉRICA DE UNA INSTALACIÓN DE ENERGÍA SOLAR TÉRMICA DESCRIPCIÓN GENÉRICA DE LA TECNOLOGÍA DE LA ENERGÍA SOLAR TÉRMICA Introducción Un sistema de energía solar térmica es aquel que permite

Más detalles

Experimento de laboratorio sobre calor latente y capacidad calorífica a bajas temperaturas (*)

Experimento de laboratorio sobre calor latente y capacidad calorífica a bajas temperaturas (*) Experimento de laboratorio sobre calor latente y capacidad calorífica a bajas temperaturas (*) I. INTRODUION Hemos desarrollado recientemente un experimento de laboratorio para nuestros cursos de física

Más detalles

Termometría Ley de enfriamiento de Newton

Termometría Ley de enfriamiento de Newton Termometría Ley de enfriamiento de Newton Objetivo Estudio del enfriamiento y el calentamiento de cuerpos y líquidos. Uso de distintos métodos de medición y análisis de los datos. Introducción El tiempo

Más detalles

La relación entre la altura de caída y el tiempo que tarda en rebotar 6 veces una pelota

La relación entre la altura de caída y el tiempo que tarda en rebotar 6 veces una pelota La relación entre la altura de caída y el tiempo que tarda en rebotar 6 veces una pelota INTRODUCCIÓN En este experimento voy a relacionar el tiempo que tarda una pelota en rebotar 6 veces desde distintas

Más detalles

PROBLEMAS RESUELTOS EQUILIBRIO TERMICO. Para cualquier inquietud o consulta escribir a: quintere@hotmail.com quintere@gmail.com quintere2006@yahoo.

PROBLEMAS RESUELTOS EQUILIBRIO TERMICO. Para cualquier inquietud o consulta escribir a: quintere@hotmail.com quintere@gmail.com quintere2006@yahoo. PROBLEMAS RESUELTOS EQUILIBRIO TERMICO Para cualquier inquietud o consulta escribir a: quintere@hotmail.com quintere@gmail.com quintere2006@yahoo.com Erving Quintero Gil Ing. Electromecánico Bucaramanga

Más detalles

Elementos de Física - Aplicaciones ENERGÍA. Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO

Elementos de Física - Aplicaciones ENERGÍA. Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO Elementos de Física - Aplicaciones ENERGÍA Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO Energía La energía es una magnitud física que está asociada a la capacidad

Más detalles

CORRIENTE ALTERNA. CIRCUITO RLC. MANEJO DEL OSCILOSCOPIO

CORRIENTE ALTERNA. CIRCUITO RLC. MANEJO DEL OSCILOSCOPIO eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE INGENIERIA QUIMICA CATEDRA DE QUIMICA GENERAL

UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE INGENIERIA QUIMICA CATEDRA DE QUIMICA GENERAL UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE INGENIERIA QUIMICA CATEDRA DE QUIMICA GENERAL TRABAJO PRACTICO - PUNTO DE FUSION OBJETIVO: Determinar el punto de fusión (o solidificación)

Más detalles

Ley de enfriamiento de Newton considerando reservorios finitos

Ley de enfriamiento de Newton considerando reservorios finitos Ley de enfriamiento de Newton considerando reservorios finitos María ecilia Molas, Florencia Rodriguez Riou y Débora Leibovich Facultad de Ingeniería, iencias Exactas y Naturales Universidad Favaloro,.

Más detalles

CALORIMETRIA. dh dt. C p

CALORIMETRIA. dh dt. C p CALORIMETRIA Fundamento teórico Los procesos termodinámicos (mezcla de agua fría con caliente, mezcla de dos líquidos, reacción química,...) se puede caracterizar a partir de las variaciones de energía

Más detalles

Aire acondicionado y refrigeración

Aire acondicionado y refrigeración Aire acondicionado y refrigeración CONCEPTO: El acondicionamiento del aire es el proceso que enfría, limpia y circula el aire, controlando, además, su contenido de humedad. En condiciones ideales logra

Más detalles

EVALUACIÓN Módulo: Ciencias Físicas Y Químicas CIENCIAS NATURALES. Sexto año básico

EVALUACIÓN Módulo: Ciencias Físicas Y Químicas CIENCIAS NATURALES. Sexto año básico EVALUACIÓN Módulo: Ciencias Físicas Y Químicas CIENCIAS NATURALES Sexto año básico Mi nombre Mi curso Nombre de mi escuela Fecha 2013 Para que puedas comprobar lo aprendido en el módulo te invitamos a

Más detalles

Circuitos de corriente continua

Circuitos de corriente continua nidad didáctica 3 Circuitos de corriente continua Qué aprenderemos? Cuáles son las leyes experimentales más importantes para analizar un circuito en corriente continua. Cómo resolver circuitos en corriente

Más detalles

CATEDRA: ELECTROTECNIA Y MAQUINAS ELECTRICAS TRABAJO PRACTICO DE LABORATORIO Nº 2 TITULO: CIRCUITOS DE CORRIENTE ALTERNA USO DEL OSCILOSCOPIO

CATEDRA: ELECTROTECNIA Y MAQUINAS ELECTRICAS TRABAJO PRACTICO DE LABORATORIO Nº 2 TITULO: CIRCUITOS DE CORRIENTE ALTERNA USO DEL OSCILOSCOPIO UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE INGENIERIA ELECTRICA CATEDRA: ELECTROTECNIA Y MAQUINAS ELECTRICAS TRABAJO PRACTICO DE LABORATORIO Nº 2 TITULO: CIRCUITOS DE CORRIENTE

Más detalles

APUNTE: ELECTRICIDAD-1 COMPONENTES DE UN CIRCUITO ELÉCTRICO

APUNTE: ELECTRICIDAD-1 COMPONENTES DE UN CIRCUITO ELÉCTRICO APUNTE: ELECTICIDAD-1 COMPONENTES DE UN CICUITO ELÉCTICO Área de EET Página 1 de 9 Confeccionado por: Ximena Nuñez Derechos eservados Titular del Derecho: INACAP N de inscripción en el egistro de Propiedad

Más detalles

Todo lo que sube baja... (... y todo lo que se carga se descarga!)

Todo lo que sube baja... (... y todo lo que se carga se descarga!) Todo lo que sube baja... (... y todo lo que se carga se descarga!) María Paula Coluccio y Patricia Picardo Laboratorio I de Física para Biólogos y Geólogos Depto. de Física, FCEyN, UBA 1999 Resumen En

Más detalles

ANEXO 7: ANÁLISIS FÍSICO-QUÍMICO DE LA BIOMASA UTILIZADA

ANEXO 7: ANÁLISIS FÍSICO-QUÍMICO DE LA BIOMASA UTILIZADA ANEXO 7: ANÁLISIS FÍSICO-QUÍMICO DE LA BIOMASA UTILIZADA 93 1.7. ANÁLISIS FÍSICO-QUÍMICO DE LA BIOMASA UTILIZADA. SARMIENTO DE VID. 1.7.1 Análisis Químico: Ensayos experimentales - Celulosa---------------------

Más detalles

E t = C e. m. (T f T i ) = 1. 3,5 (T f -20) =5 Kcal

E t = C e. m. (T f T i ) = 1. 3,5 (T f -20) =5 Kcal EJERCICIOS TEMA 1: LA ENERGÍA Y SU TRANSFORMACIÓN Ejercicio 1: Calcula la energía, en KWh, que ha consumido una máquina que tiene 40 CV y ha estado funcionando durante 3 horas. Hay que pasar la potencia

Más detalles

Cátedras: Física II (Ing. Civil) y Física del Calor (Ing. Electromecánica) Tema : primer principio de la termodinámica y calorimetría

Cátedras: Física II (Ing. Civil) y Física del Calor (Ing. Electromecánica) Tema : primer principio de la termodinámica y calorimetría Laboratoriowebtpn2.doc Cátedras: Física II (Ing. Civil) y Física del Calor (Ing. Electromecánica) Tema : primer principio de la termodinámica y calorimetría Nombre del trabajo: calorimetría Temas asociados:

Más detalles

Tutorial de Electrónica

Tutorial de Electrónica Tutorial de Electrónica Introducción Conseguir que la tensión de un circuito en la salida sea fija es uno de los objetivos más importantes para que un circuito funcione correctamente. Para lograrlo, se

Más detalles

Problemas resueltos. Consideramos despreciable la caída de tensión en las escobillas, por lo que podremos escribir:

Problemas resueltos. Consideramos despreciable la caída de tensión en las escobillas, por lo que podremos escribir: Problemas resueltos Problema 1. Un motor de c.c (excitado según el circuito del dibujo) tiene una tensión en bornes de 230 v., si la fuerza contraelectromotriz generada en el inducido es de 224 v. y absorbe

Más detalles

Termodinámica I: Calores específicos

Termodinámica I: Calores específicos Termodinámica I: Calores específicos I Semestre 2012 CALORES ESPECÍFICOS Se requieren distintas cantidades de energía para elevar un grado la temperatura de masas idénticas de diferentes sustancias. Es

Más detalles

MEDIDA DEL CALOR ESPECÍFICO

MEDIDA DEL CALOR ESPECÍFICO Laboratorio de Física General Primer Curso (Termodinámica) MEDIDA DEL CALOR ESPECÍFICO Fecha: 07/02/05 1. Objetivo de la práctica Familiarizarse con las medidas calorimétricas mediante la medida del calor

Más detalles

ANÁLISIS TÉRMICO. Consultoría de Calidad y Laboratorio S.L. RPS-Qualitas

ANÁLISIS TÉRMICO. Consultoría de Calidad y Laboratorio S.L. RPS-Qualitas ANÁLISIS TÉRMICO Introducción. El término Análisis Térmico engloba una serie de técnicas en las cuales, algún parámetro físico del sistema es medido de manera continua en función de la temperatura, mientras

Más detalles

PROGRAMA DE TECNOLOGÍA ELECTRICA - UTP LABORATORIO DE CIRCUITOS - PRÁCTICA 6: EQUILIBRIO DE POTENCIA Y MÁXIMA TRANSFERENCIA DE POTENCIA.

PROGRAMA DE TECNOLOGÍA ELECTRICA - UTP LABORATORIO DE CIRCUITOS - PRÁCTICA 6: EQUILIBRIO DE POTENCIA Y MÁXIMA TRANSFERENCIA DE POTENCIA. PROGRAMA DE TECNOLOGÍA ELECTRICA - UTP LABORATORIO DE CIRCUITOS - PRÁCTICA 6: EQUILIBRIO DE POTENCIA Y MÁXIMA TRANSFERENCIA DE POTENCIA. 1. OBJETIVOS. Seleccionar adecuadamente el amperímetro y el voltímetro

Más detalles

Ing. Gerardo Sarmiento CALOR Y TEMPERATURA

Ing. Gerardo Sarmiento CALOR Y TEMPERATURA Ing. Gerardo Sarmiento CALOR Y TEMPERATURA Como se mide y transporta el calor La cantidad de calor (Q) se expresa en las mismas unidades que la energía y el trabajo, es decir, en Joule. Otra unidad es

Más detalles

TERMOMETRÌA Y CALORIMETRÌA

TERMOMETRÌA Y CALORIMETRÌA TERMOMETRÌA Y CALORIMETRÌA Termómetros Basados en alguna propiedad física de un sistema que cambia con la temperatura: Volumen de un líquido Longitud de un sólido Presión de un gas a volumen constante

Más detalles

TEMA 4: Circuito frigorífico y bomba de calor: elementos y aplicaciones.

TEMA 4: Circuito frigorífico y bomba de calor: elementos y aplicaciones. Esquema: TEMA 4: Circuito frigorífico y bomba de calor: elementos y aplicaciones. TEMA 4: Circuito frigorífico y bomba de calor: elementos y aplicaciones....1 1.- Introducción...1 2.- Máquina frigorífica...1

Más detalles

Estudio experimental de procesos termodinámicos

Estudio experimental de procesos termodinámicos Estudio experimental de procesos termodinámicos Julieta Romani, Paula Quiroga, María G. Larreguy y María Paz Frigerio julietaromani@hotmail.com, comquir@ciudad.com.ar, merigl@yahoo.com.ar, mapaz@vlb.com.ar

Más detalles

Determinación de Humedad en la Atmósfera

Determinación de Humedad en la Atmósfera Determinación de Humedad en la Atmósfera Desarrollado por Carolina Meruane y René Garreaud DGF U de Chile Abril 2006 1. Humedad en la atmósfera El aire en la atmósfera se considera normalmente como una

Más detalles

Tema 1: Circuitos eléctricos de corriente continua

Tema 1: Circuitos eléctricos de corriente continua Tema 1: Circuitos eléctricos de corriente continua Índice Magnitudes fundamentales Ley de Ohm Energía y Potencia Construcción y aplicación de las resistencias Generadores Análisis de circuitos Redes y

Más detalles

Sistema termodinámico

Sistema termodinámico IngTermica_01:Maquetación 1 16/02/2009 17:53 Página 1 Capítulo 1 Sistema termodinámico 1.1 Introducción En sentido amplio, la Termodinámica es la ciencia que estudia las transformaciones energéticas. Si

Más detalles

Completar: Un sistema material homogéneo constituido por un solo componente se llama.

Completar: Un sistema material homogéneo constituido por un solo componente se llama. IES Menéndez Tolosa 3º ESO (Física y Química) 1 Completar: Un sistema material homogéneo constituido por un solo componente se llama. Un sistema material homogéneo formado por dos o más componentes se

Más detalles

Alumno..PARALELO..fecha: 7/ 02 /12 Prof.: del paralelo.. DURACION DEL EXAMEN: DOS (2) HORAS

Alumno..PARALELO..fecha: 7/ 02 /12 Prof.: del paralelo.. DURACION DEL EXAMEN: DOS (2) HORAS ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO 211-212 EXAMEN LABORATORIO DE FISICA C Alumno..PARALELO..fecha: 7/ 2 /12 Prof.: del paralelo.. DURACION DEL EXAMEN: DOS

Más detalles

Integrantes: 2. Introducción

Integrantes: 2. Introducción Facultad de Ciencias Departamento de Física Fundamentos de Electricidad y Magnetismo Laboratorio N 7 Campo Magnético Ovidio Almanza Noviembre 28 de 2011 Integrantes: Diana Milena Ramírez Gutiérrez Cod.

Más detalles

BALANCE ENERGÉTICO EN EL SER HUMANO OBTENER LA ECUACIÓN PARA ALCANZAR LA TEMPERATURA DE EQUILIBRIO EN EL CUERPO HUMANO

BALANCE ENERGÉTICO EN EL SER HUMANO OBTENER LA ECUACIÓN PARA ALCANZAR LA TEMPERATURA DE EQUILIBRIO EN EL CUERPO HUMANO BAANCE ENERGÉTICO EN E ER HUMANO OBTENER A ECUACIÓN PARA ACANZAR A TEMPERATURA DE EQUIIBRIO EN E CUERPO HUMANO El ser humano es un animal homeotermo. Qué significa esto? Que bajo condiciones fisiológicas

Más detalles

MÉTODO DE ENSAYO PARA DETERMINAR EL CONTENIDO DE HUMEDAD DE UN SUELO

MÉTODO DE ENSAYO PARA DETERMINAR EL CONTENIDO DE HUMEDAD DE UN SUELO MÉTODO DE ENSAYO PARA DETERMINAR EL CONTENIDO DE HUMEDAD DE UN SUELO Referencia ASTM D-2216, J. E. Bowles ( Experimento Nº 1), MTC E 108-2000 OBJETIVO El presente modo operativo establece el método de

Más detalles

LABORATORIO DE QUÍMICA ANALÍTICA INFORME PRESENTADO A LA PROF. ANGELA SIFONTE

LABORATORIO DE QUÍMICA ANALÍTICA INFORME PRESENTADO A LA PROF. ANGELA SIFONTE LABORATORIO DE QUÍMICA ANALÍTICA INFORME PRESENTADO A LA PROF. ANGELA SIFONTE TURBIDIMETRÍA INFORME N 9. PRESENTADO POR LOS BRS.: WILLIAM CHEN CHEN C.I.: 16.113.714 YUSMARY DE ABREU C.I.: 15.914.973 CARACAS,

Más detalles

LOS INSTRUMENTOS DE MEDIDA

LOS INSTRUMENTOS DE MEDIDA LOS INSTRUMENTOS DE MEDIDA Los instrumentos de medida pueden introducir un error sistemático en el proceso de medida por un defecto de construcción o de calibración. Sólo se elimina el error cambiando

Más detalles

ALGUNAS ACTIVIDADES EN LAS CIENCIAS

ALGUNAS ACTIVIDADES EN LAS CIENCIAS ALGUNAS ACTIVIDADES EN LAS CIENCIAS CIENCIAS FÍSICAS PRIMER AÑO. MARZO 2007 LUIS BONELLI LOS CUERPOS Y LA LUZ ACTIVIDAD 3.1 En esta etapa de nuestro curso no disponemos de elementos suficientes para responder

Más detalles

Práctica 5. Aislamiento térmico. 5.1. Objetivos conceptuales. 5.2. Conceptos básicos

Práctica 5. Aislamiento térmico. 5.1. Objetivos conceptuales. 5.2. Conceptos básicos Práctica 5 Aislamiento térmico 5.1. Objetivos conceptuales Estudiar las propiedades aislantes de paredes de distintos materiales: determinar la conductividad térmica de cada material y la resistencia térmica

Más detalles

Ley de crecimiento de una mancha de aceite.

Ley de crecimiento de una mancha de aceite. Ley de crecimiento de una mancha de aceite. María Florencia Filadoro Alikhanoff E-mail: floty@hotmail.com Resumen Se realizaron mediciones del diámetro de una mancha de petróleo para determinar la tasa

Más detalles

"DETERMINACIÓN EXPERIMENTAL DE LA LEY DE ENFRIAMIENTO DE NEWTON"

DETERMINACIÓN EXPERIMENTAL DE LA LEY DE ENFRIAMIENTO DE NEWTON EXPERIMENTO FA5 LABORATORIO DE FÍSICA AMBIENTAL "DETERMINACIÓN EXPERIMENTAL DE LA LEY DE ENFRIAMIENTO DE NEWTON" MATERIAL: 1 (1) PLACA CALEFACTORA CON TERMOSTATO. 2 (2) TERMOPARES TIPO "K". 3 (1) TERMÓMETRO

Más detalles

PR-SSI ACTIVIDAD 1: EL SENTIDO DEL TACTO, LO CALIENTE Y LO FRIO GUIA DEL MAESTRO(A)

PR-SSI ACTIVIDAD 1: EL SENTIDO DEL TACTO, LO CALIENTE Y LO FRIO GUIA DEL MAESTRO(A) PR-SSI ACTIVIDAD 1: EL SENTIDO DEL TACTO, LO CALIENTE Y LO FRIO Tiempo sugerido: 100 minutos Objetivos específicos: GUIA DEL MAESTRO(A) 1. Examinar lo que se siente al tocar objetos que están a diferente

Más detalles

FÍSICA APLICADA. 1- Completar el siguiente cuadro; utilizando la ecuación de conversión: CENTIGRADO FAHRENHEIT KELVIN 40 F

FÍSICA APLICADA. 1- Completar el siguiente cuadro; utilizando la ecuación de conversión: CENTIGRADO FAHRENHEIT KELVIN 40 F UNIDAD 5: TEMPERATURA Y CALOR 5. A: Temperatura y dilatación Temperatura, energía y calor. Medición de la temperatura. Escalas de temperatura. Dilatación lineal, superficial y volumétrica. Dilatación anómala

Más detalles

Diseño de una caja de refrigeración por termocélulas

Diseño de una caja de refrigeración por termocélulas Diseño de una caja de refrigeración por termocélulas Antonio Ayala del Rey Ingeniería técnica de telecomunicaciones especialidad en sist. electrónicos Resumen El diseño de un sistema refrigerante termoeléctrico

Más detalles

TEMA 1 Conceptos básicos de la termodinámica

TEMA 1 Conceptos básicos de la termodinámica Bases Físicas y Químicas del Medio Ambiente TEMA 1 Conceptos básicos de la termodinámica La termodinámica es el estudio de la transformación de una forma de energía en otra y del intercambio de energía

Más detalles

Integración de una resistencia calefactora de SiC y un tubo de nitruro de silicio en baños de aluminio fundido

Integración de una resistencia calefactora de SiC y un tubo de nitruro de silicio en baños de aluminio fundido Integración de una resistencia calefactora de SiC y un tubo de nitruro de silicio en baños de aluminio fundido Por Mitsuaki Tada Traducido por ENTESIS technology Este artículo describe la combinación de

Más detalles

EL PARACAIDISTA. Webs.uvigo.es/cudav/paracaidismo.htm

EL PARACAIDISTA. Webs.uvigo.es/cudav/paracaidismo.htm EL PARACAIDISTA Webs.uvigo.es/cudav/paracaidismo.htm 1. Un avión vuela con velocidad constante en una trayectoria horizontal OP. Cuando el avión se encuentra en el punto O un paracaidista se deja caer.

Más detalles

Resistencia de filamento 0,5 Ω Balanza Digital Calorímetro de Aluminio Conectores 120 ml de agua Revestimiento de lana para aislación

Resistencia de filamento 0,5 Ω Balanza Digital Calorímetro de Aluminio Conectores 120 ml de agua Revestimiento de lana para aislación FIS-153 Electricidad y Magnetismo Efecto Joule Objetivo Estudiar la transferencia de energía entre una resistencia eléctrica energizada y el medio ambiente que está sumergida (agua), obteniendo, a partir

Más detalles

Generador de Faraday de una sola pieza

Generador de Faraday de una sola pieza Generador de Faraday de una sola pieza Autores Frigerio, Paz La Bruna,Gimena Larreguy, María Romani, Julieta mapaz@vlb.com.ar labrugi@yahoo.com merigl@yahoo.com julietaromani@hotmail.com Laboratorio de

Más detalles

6. Determinación de la sección de los conductores. Consejos para un Cableado Seguro Propiedad de Prysmian, Inc.

6. Determinación de la sección de los conductores. Consejos para un Cableado Seguro Propiedad de Prysmian, Inc. 6. Determinación de la sección de los conductores Características Funcionales de los Cables Las líneas o cables deben ser capaces de transportar la corriente normal de funcionamiento, y la que se presenta

Más detalles

UNIVERSIDAD TECNOLÓGICA DE PUEBLA. Térmica PRÁCTICA 4 CALOR

UNIVERSIDAD TECNOLÓGICA DE PUEBLA. Térmica PRÁCTICA 4 CALOR Térmica PRÁCTICA 4 CALOR OBJETIVO: Determinar la relación existente entre las variables calor (Q)-temperatura (ΔT) y calor (Q) masa (m) para agua líquida. Construir la gráfica que relaciona las variables

Más detalles

Tema 4 Termodinámica de la atmósfera. Humedad atmosférica. Estabilidad e inestabilidad

Tema 4 Termodinámica de la atmósfera. Humedad atmosférica. Estabilidad e inestabilidad Tema 4 Termodinámica de la atmósfera. Humedad atmosférica. Estabilidad e inestabilidad 1 El ciclo hidrológico El agua se presenta en la naturaleza en los 3 estados de la materia (sólido, líquido y gaseoso).

Más detalles

PROBLEMAS RESUELTOS TEMA: 3

PROBLEMAS RESUELTOS TEMA: 3 PROBLEMAS RESUELTOS TEMA: 3 1. Una partícula de 3 kg se desplaza con una velocidad de cuando se encuentra en. Esta partícula se encuentra sometida a una fuerza que varia con la posición del modo indicado

Más detalles

GUIA DE EJERCICIOS DE OPERACIONES UNITARIAS II SECADO

GUIA DE EJERCICIOS DE OPERACIONES UNITARIAS II SECADO LABORATORIO DE OPERACIONES UNITARIAS FACULTAD DE CS QUÍMICAS Y FARMACÉUTICAS UNIVERSIDAD DE CHILE GUIA DE EJERCICIOS DE OPERACIONES UNITARIAS II SECADO 1.- Una plancha de cartón de dimensiones 100 cm x

Más detalles

CAPITULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO. 4.1 Comparación del proceso de sacado con vapor sobrecalentado y aire.

CAPITULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO. 4.1 Comparación del proceso de sacado con vapor sobrecalentado y aire. CAPITULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO. 4.1 Comparación del proceso de sacado con vapor sobrecalentado y aire. El proceso de secado es una de las operaciones más importantes en la industria

Más detalles

ELEMENTOS DE UN CIRCUITO Unidad 1. Conceptos básicos de electricidad

ELEMENTOS DE UN CIRCUITO Unidad 1. Conceptos básicos de electricidad ELEMENTOS DE UN CIRCUITO Unidad 1. Conceptos básicos de electricidad Qué elementos componen un circuito eléctrico? En esta unidad identificaremos los elementos fundamentales de un circuito eléctrico, nomenclatura

Más detalles

EXPERIENCIA DIDÁCTICA DE FÍSICA PARA DETERMINAR LA CONSTANTE ELÁSTICA DE UN MUELLE

EXPERIENCIA DIDÁCTICA DE FÍSICA PARA DETERMINAR LA CONSTANTE ELÁSTICA DE UN MUELLE EXPERIENCIA DIDÁCTICA DE FÍSICA PARA DETERMINAR LA CONSTANTE ELÁSTICA DE UN MUELLE AUTORÍA MARÍA FRANCISCA OJEDA EGEA TEMÁTICA EXPERIMENTO FÍSICA Y QUÍMICA, APLICACIÓN MÉTODO CIENTÍFICO ETAPA EDUCACIÓN

Más detalles

EFECTO JOULE-THOMSON

EFECTO JOULE-THOMSON PRACTICA nº 4 EFECTO JOULE-THOMSON Fundamentos teóricos El proceso de Joule-Thomson consiste en el paso de un gas desde un contenedor a presión constante a otro a presión también constante y menor (Pf

Más detalles

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 Entropía s [KJ/Kg.ºK]

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 Entropía s [KJ/Kg.ºK] UNIVERSIDAD NACIONAL DE TUCUMÁN Facultad de Ciencias Exactas y Tecnología CENTRALES ELÉCTRICAS TRABAJO PRÁCTICO Nº 3 CENTRALES TÉRMICAS DE VAPOR CICLO DE RANKINE ALUMNO: AÑO 2015 INTRODUCCIÓN El Ciclo

Más detalles

EFICIENCIA EN LOS SISTEMAS DE BOMBEO Y DE AIRE COMPRIMIDO

EFICIENCIA EN LOS SISTEMAS DE BOMBEO Y DE AIRE COMPRIMIDO EFICIENCIA EN LOS SISTEMAS DE BOMBEO Y DE AIRE COMPRIMIDO 1. GENERALIDADES La sencillez en la operación, la disponibilidad, la facilidad y la seguridad en el manejo de las herramientas y elementos neumáticos

Más detalles

Unidad de carga Laddomat 21-60

Unidad de carga Laddomat 21-60 Unidad de carga Laddomat 21-60 Instrucciones de uso e instalación ATENCIÓN! Los diagramas de este folleto solo describen los principios de conexión. Cada instalación debe ser dimensionada y realizada de

Más detalles

Espiras y brújulas: medición del campo magnético de la Tierra

Espiras y brújulas: medición del campo magnético de la Tierra Espiras y brújulas: medición del campo magnético de la Tierra María Inés Aguilar 1, Mariana Ceraolo 2, Mónica Pose 3 1 Centro Educativo San Francisco Javier, Buenos Aires, miaguilar@ciudad.com.ar 2 Colegio

Más detalles

ESTIMACIÓN DE LA RADIACIÓN SOLAR

ESTIMACIÓN DE LA RADIACIÓN SOLAR UNIDAD DE APOYO TÉCNICO PARA EL SANEAMIENTO BÁSICO DEL ÁREA RURAL OPS/CEPIS/03.89 ESTIMACIÓN DE LA RADIACIÓN SOLAR Auspiciado por: Centro Panamericano de Ingeniería Sanitaria y Ciencias del Ambiente Área

Más detalles

Mejora del factor de potencia

Mejora del factor de potencia Práctica de corriente alterna. Mejora del factor de potencia Luis Íñiguez de Onzoño Sanz Fundamentos Físicos para Ingenieros III 28 de noviembre de 2007 Índice 1. Conceptos relacionados I 2. Principios

Más detalles

Acondicionadores de aire

Acondicionadores de aire Acondicionadores de aire 1. Tipos de Equipos Existen equipos acondicionadores condensados por aire y condensados por agua. En esta descripción se incluyen únicamente los condensados por aire, dada su fácil

Más detalles

Universidad Simón Bolívar Departamento de conversión y transporte de energía Conversión de energía III (CT3311) 3era tarea. 08-10349 Jorge Feijoo

Universidad Simón Bolívar Departamento de conversión y transporte de energía Conversión de energía III (CT3311) 3era tarea. 08-10349 Jorge Feijoo Universidad Simón Bolívar Departamento de conversión y transporte de energía Conversión de energía III (CT3311) 3era tarea 08-10349 Jorge Feijoo Tarea No.3 (7-12-12) Máquinas Eléctricas III CT-3311 El

Más detalles

Transformación de calor en trabajo: el motor de Stirling

Transformación de calor en trabajo: el motor de Stirling Práctica Nº 1 ransformación de calor en trabajo: el motor de Stirling 1. Conceptos implicados Primera y segunda ley de la termodinámica, calor, trabajo, máquinas térmicas, transformación de la energía.

Más detalles

TEMA 2 CIRCUITOS DE CORRIENTE CONTINUA

TEMA 2 CIRCUITOS DE CORRIENTE CONTINUA TEMA 2 CIRCUITOS DE CORRIENTE CONTINUA II.1 Ley de ohm II.2 Resistencia II.3 Potencia II.4 Energía II.5 Instrumentos de medida II.6 Acoplamiento serie II.7 Acoplamiento paralelo II.8 Acoplamiento mixto

Más detalles

ESTADOS DE AGREGACIÓN DE LA MATERIA

ESTADOS DE AGREGACIÓN DE LA MATERIA ESADOS DE AGREGACIÓN DE LA MAERIA. Propiedades generales de la materia La materia es todo aquello que tiene masa y volumen. La masa se define como la cantidad de materia de un cuerpo. Se mide en kg. El

Más detalles

Integrantes: Andrés Felipe Cárdenas Álvarez 2101302 Diana Katherine Carreño Moyano 2100993 Lorena Duarte Peña 2100968. Grupo: 4

Integrantes: Andrés Felipe Cárdenas Álvarez 2101302 Diana Katherine Carreño Moyano 2100993 Lorena Duarte Peña 2100968. Grupo: 4 PRÁCTICA 8. DETERMINACIÓN DE CALCIO Y MAGNESIO EN UN LÁCTEO, LECHE ENTERA PARMALAT Integrantes: Andrés Felipe Cárdenas Álvarez 2101302 Diana Katherine Carreño Moyano 2100993 Lorena Duarte Peña 2100968

Más detalles

EQUIVALENCIA CALOR-TRABAJO. Elaborado por M en C Omar Hernández Segura

EQUIVALENCIA CALOR-TRABAJO. Elaborado por M en C Omar Hernández Segura EQUIVALENCIA CALOR-TRABAJO TRABAJO 1 TRABAJO Y SUS VARIEDADES Tipo de trabajo: δw Donde: Unidades δw (J) Expansión-compresión P op dv P op es la presión de oposición dv es el cambio de volumen Superficial

Más detalles

CALOR. Q = c m (Tf - Ti) (1) Q será positivo si la temperatura final es mayor que la inicial (Tf > Ti) y negativo en el caso contrario (Tf < Ti).

CALOR. Q = c m (Tf - Ti) (1) Q será positivo si la temperatura final es mayor que la inicial (Tf > Ti) y negativo en el caso contrario (Tf < Ti). 1. CANTIDADES DE CALOR CALOR Aun cuando no sea posible determinar el contenido total de energía calorífica de un cuerpo, puede medirse la cantidad que se toma o se cede al ponerlo en contacto con otro

Más detalles

CIRCUITO ELÉCTRICO ELEMENTAL

CIRCUITO ELÉCTRICO ELEMENTAL CIRCUITO ELÉCTRICO ELEMENTL Elementos que integran un circuito elemental. Los elementos necesarios para el armado de un circuito elemental son los que se indican en la figura siguiente; Figura 1 Extremo

Más detalles

8 TABLA DE INTENSIDADES MÁXIMAS ADMI SIBLES EN SERVICIO PERMANENTE

8 TABLA DE INTENSIDADES MÁXIMAS ADMI SIBLES EN SERVICIO PERMANENTE 8 TABLA DE INTENSIDADES MÁXIMAS ADMI SIBLES EN SERVICIO PERMANENTE 8. CONDICIONES DE INSTALACIÓN En las tablas 6 a 9 se dan las intensidades máximas admisibles en régimen permanente para los cables con

Más detalles

Equivalente electro-mecánico del calor usando tecnología computarizada

Equivalente electro-mecánico del calor usando tecnología computarizada Equivalente electro-mecánico del calor usando tecnología computarizada Montero, Germán 1,2, Rodríguez, Nicolas 1 1 Facultad de Humanidades y Educación. Departamento de Matemáticas y Física. Laboratorio

Más detalles

PRÁCTICAS DE LABORATORIO DE FÍSICA

PRÁCTICAS DE LABORATORIO DE FÍSICA PRÁCTICAS DE LABORATORIO DE FÍSICA DEPARTAMENTO DE FÍSICA APLICADA I CURSO 2014-2015 1 Práctica 1. Cálculo de errores: medidas directas e indirectas. Representación gráfica 1.1. Fundamento teórico La física

Más detalles

INSTRUMENTOS de medición

INSTRUMENTOS de medición INSTRUMENTOS de medición Medir: Es comparar una cantidad desconocida que queremos determinar y una cantidad conocida de la misma magnitud, que elegimos como unidad. Al resultado de medir lo llamamos Medida

Más detalles

EJERCICIOS PROPUESTOS. Qué le sucede al movimiento térmico de las partículas de un cuerpo cuando aumenta su temperatura?

EJERCICIOS PROPUESTOS. Qué le sucede al movimiento térmico de las partículas de un cuerpo cuando aumenta su temperatura? 9 ENERGÍA Y CALOR EJERCICIOS PROPUESTOS 9.1 Qué le sucede al movimiento térmico de las partículas de un cuerpo cuando aumenta su temperatura? Al aumentar la temperatura, se mueven con mayor velocidad y

Más detalles
Sitemap