Eje temático: Álgebra y funciones Contenidos: Raíces cuadradas y cúbicas - Racionalización Ecuaciones irracionales. Nivel: 3 Medio


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Eje temático: Álgebra y funciones Contenidos: Raíces cuadradas y cúbicas - Racionalización Ecuaciones irracionales. Nivel: 3 Medio"

Transcripción

1 Eje temático: Álgebra y funciones Contenidos: Raíces cuadradas y cúbicas - Racionalización Ecuaciones irracionales. Nivel: 3 Medio Raíces 1. Raíces cuadradas y cúbicas Comencemos el estudio de las raíces haciéndonos la siguiente pregunta: Si el área de un cuadrado es 64 cm, cuál es la medida de su lado? Para responder esto debemos encontrar un número que multiplicado por sí mismo dé cómo resultado 64. Este número se denomina raíz cuadrada de 64 y es 8. Y si el área de un cuadrado es 15 cm, cuál es su lado? Para responder esto debemos encontrar un número que multiplicado por sí mismo dé 15. Este número se denomina raíz cuadrada de 15 y es aproximadamente 3,879. Si generalizamos lo anterior podemos afirmar que: Por otro lado, la igualdad: se cumple solo si x > 0, si tenemos, esto no es igual a -3, porque el resultado de la multiplicación de dos números negativos es un número positivo. Por lo tanto: Para cualquier valor real de x. Existe, entonces, la raíz cuadrada de un número negativo? Y si existe, cómo se calcula? Si en la raíz:, a es negativo, entonces la raíz no es un número real, y se debe determinar como un número imaginario. Por ejemplo: siendo. Las raíces cuadradas de números negativos no están definidas en los números reales y aunque en algunas calculadoras científicas al tratar de calcularlas aparece ERROR, esto significa que no tiene valor en R (reales) porque es un número imaginario. Y si el volumen de un cubo es 64 cm 3, cuál es la medida de su arista? Para responder esto debemos encontrar un número que multiplicado por sí mismo tres veces, sea 64. Este número se denomina raíz cúbica de 64 y es 4, puesto que = 64.

2 Por lo tanto, si la raíz es cúbica, tenemos que: En este caso, si a es negativo, entonces b resulta ser también negativo, porque el resultado de la multiplicación de tres números negativos será otro negativo. Por otro lado, si a es positivo, b también será positivo, debido que al multiplicar tres números positivos, el resultado tendrá signo positivo. Por lo tanto, la raíz cúbica está definida para todo número real. Definiendo en forma general:. Raíces y potencias de exponente fraccionario La raíz de número se puede definir también mediante una potencia de exponente fraccionario: Donde n es el índice de la raíz, y m el índice de la cantidad sub radical. Como vimos anteriormente, cuando no aparece n (índice de la raíz) se entiende que su valor es dos (raíz cuadrada). Esta definición está sujeta a las siguientes restricciones: - Las raíces de índice par están definidas solo para números reales positivos. - Las raíces de índice impar están definidas para todo número real. Debido a que las raíces pueden convertirse en potencias de exponente fraccionario, cumplen con todas las propiedades de potencias.

3 3. Propiedades de las raíces 1. Multiplicación de raíces de igual índice. División de raíces de igual índice 3. Raíz de raíz 1 n m nm a = a 1 n 1 n m m nm a = a = a nm = 4. Raíz de una potencia cuyo exponente es igual al índice a 5. Propiedad de amplificación 6. Ingreso de un factor dentro de una raíz Además : 0 n = 0 ; y 1n = 1

4 Observación: las propiedades anteriores son válidas solamente en el caso de que las raíces estén definidas en los números reales. (recuerda la restricción que si el índice es par entonces la cantidad subradical debe ser mayor o igual que 0) 4. Operatoria con raíces 1. Adición y sustracción de raíces semejantes Las raíces cuyo resultado no es un número entero representan números irracionales, (números decimales infinitos no periódicos), por lo que se calculan de manera aproximada. Su expresión en forma de raíz representa al número irracional completo considerando esta raíz como un símbolo. Es por eso que para sumar o restar expresiones con raíces, se deben trabajar como expresiones algebraicas, es decir, solo podemos reducir aquellas que son semejantes. Se llaman raíces semejantes cuando tienen la misma cantidad subradical; por ejemplo, son términos con raíces semejantes y se pueden sumar y/o restar. Recuerda que se suman o restan los coeficientes numéricos y se conserva el literal, en este caso la raíz inexacta En el caso de sumar o restar raíces no semejantes, se deben descomponer las cantidades subradicales para convertirlas (si es posible) a raíces semejantes. Ejemplo: Se descomponen las cantidades subradicales en forma conveniente, de modo que uno de los factores debe ser un número cuadrado perfecto: Observa que las raíces cuadradas exactas corresponden a los cuadrados perfectos {1, 4, 9, 16, 5, 36, 49, 64, 81, 100, 11, 144, 169, 196, 5, n }. Multiplicación y división de raíces de igual índice En este caso aplicamos las propiedades (1) y () de las raíces, descomponiendo las cantidades subradicales:. Ejemplo: 1) Multiplicación: * *

5 ) División: * * 3. Multiplicación y división de raíces de distinto índice En este caso es conveniente utilizar la propiedad de amplificación para igualar índices y luego las propiedades (1) y (). Ejemplo: Observa que el mínimo común múltiplo entre los índices es seis, entonces podemos amplificar igualando los índices a 6: 4. Multiplicación de polinomios con raíces Como las raíces inexactas se consideran como símbolos literales, podemos ejemplificar productos notables Ejemplo: * ( 3 + 5) = = = * ( 8 ) = 8 8 = = 10 ( 4) = * Observa que el producto de la suma por su diferencia, siempre que tengas raíces cuadradas, es igual al cuadrado del primer término menos el cuadrado del segundo término; por tanto, tenemos que el cuadrado de una raíz cuadrada siempre será un número racional (sin raíces).

6 5. Racionalización Se debe racionalizar una expresión fraccionaria si el denominador contiene alguna expresión radical. El método consiste en eliminar las raíces que se encuentran en el denominador de una fracción mediante la amplificación de modo conveniente para que en el denominador se pueda extraer totalmente la raíz. Analicemos los casos más importantes: Caso 1: Una raíz cuadrada en el denominador: Cómo racionalizar la fracción? Si amplificamos la fracción por, entonces el denominador quedará igual a Por lo tanto tenemos que: Caso : Raíces cuadradas en el denominador, con adiciones y sustracciones. Ejemplo: Racionalicemos la fracción En este caso, amplificamos la fracción por denominador una suma por su diferencia: para formar en el Caso 3: Una raíz cúbica en el denominador, sin adiciones ni sustracciones. Ejemplo: Racionalizar: En este caso, debemos amplificar la fracción por con el objetivo de obtener una raíz cúbica exacta. (Recuerda que los cubos perfectos son: {1, 8, 7, 64, 15, 16,, n 3 }

7 6. Orden de expresiones radicales Una de las aplicaciones de la racionalización es que nos permite ordenar fracciones que tengan raíces en el denominador. Ejemplo: Ordenar de menor a mayor las fracciones x, y, z: Racionalizamos cada una de las fracciones: De lo anterior se deduce que: y < x < z, puesto que y = x 1 z = 3(x + 1) 7. Ecuaciones irracionales Una ecuación irracional es una ecuación que tiene la incógnita en alguna cantidad subradical. Para resolverla se deben eliminar las raíces que aparezcan. Después de obtenido el valor de la incógnita, se debe comprobar reemplazando el valor obtenido en la ecuación original. Ejemplo 1: Calcular el valor de la incógnita x en : Para resolver la ecuación, primero elevamos al cuadrado ambos lados de la ecuación para eliminar la raíz exterior: Comprobando en la ecuación original, tenemos: Por lo tanto x = 5 es la solución de la ecuación.

8 Ejemplo : Elevamos al cuadrado ambos lados de la ecuación: Comprobando en la ecuación original, se obtiene: es una igualdad verdadera puesto que = 0. Lo que es correcto, por lo tanto x = 3 es la solución de la ecuación.

( 3) esto no es igual a 3 ya que sería

( 3) esto no es igual a 3 ya que sería MATEMÁTICA MÓDULO 3 Eje temático: Álgebra y Funciones 1. RAÍCES CUADRADAS Y CÚBICAS Comencemos el estudio de las raíces haciéndonos la siguiente pregunta: si el área de un cuadrado es 15 cm, cuál es su

Más detalles

UNIDAD DE APRENDIZAJE II

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE II Saberes procedimentales 1. Multiplicar y dividir números enteros y fraccionarios 2. Utilizar las propiedad conmutativas y asociativa Saberes declarativos A Concepto de base, potencia

Más detalles

TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1

TEMA 2: Potencias y raíces. Tema 2: Potencias y raíces 1 TEMA : Potencias y raíces Tema : Potencias y raíces ESQUEMA DE LA UNIDAD.- Concepto de potencia..- Potencias de exponente natural..- Potencias de exponente entero negativo..- Operaciones con potencias..-

Más detalles

UNA ECUACIÓN es una igualdad de dos expresiones algebraicas.

UNA ECUACIÓN es una igualdad de dos expresiones algebraicas. UNA EXPRESIÓN ALGEBRAICA es una combinación de números, variables (o símbolos) y operaciones como la suma, resta, multiplicación, división, potenciación y radicación. Ejemplos. UNA ECUACIÓN es una igualdad

Más detalles

CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV

CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV 1. Números reales. Aritmética y álgebra 1.1. Operar con fracciones de números

Más detalles

RESUMEN DE CONCEPTOS

RESUMEN DE CONCEPTOS RESUMEN DE CONCEPTOS 1º ESO MATEMÁTICAS NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número exacto de veces. Ejemplo: 16 es múltiplo

Más detalles

Radicales y sus operaciones MATEMÁTICAS 2º CICLO E.S.O.

Radicales y sus operaciones MATEMÁTICAS 2º CICLO E.S.O. Radicales y sus operaciones MATEMÁTICAS º CICLO E.S.O. Objetivos: Simplificar radicales Efectuar operaciones de suma, resta, multiplicación y división con radicales Racionalizar parte de una fracción Notación:

Más detalles

LOS NÚMEROS RACIONALES

LOS NÚMEROS RACIONALES LOS NÚMEROS RACIONALES OBJETIVOS: Utilizar y clasificar los distintos conjuntos numéricos en sus diversas formas de expresión, tanto en las ciencias exactas como en las ciencias sociales y en el ámbito

Más detalles

A) B) C) 5 D) 5 9 E) A) 0 B) 9 9 C) D) E) no está definido 6. ( ) : 4 ( ) 0 A) B) 5 C) 8 D) 9 E) 0 7. Si n Z, entonc

A) B) C) 5 D) 5 9 E) A) 0 B) 9 9 C) D) E) no está definido 6. ( ) : 4 ( ) 0 A) B) 5 C) 8 D) 9 E) 0 7. Si n Z, entonc GUÍA Nº 5 UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS REALES POTENCIAS EN Q DEFINICIONES a a a a a a a a a n, con a Q {0} y n Z n factores a 0, a 0 a -n a n, a Q {0} y n Z + OBSERVACIONES 0 n 0, si n >

Más detalles

RADICACIÓN EN LOS REALES

RADICACIÓN EN LOS REALES RADICACIÓN EN LOS REALES La raíz n ésima de un número real es otro número real tal que: n a b si y solo si b n Donde el signo se llama radical, n es el índice, a es el radicando y b es la raíz. En la radicación

Más detalles

TEMA Nº 1. Conjuntos numéricos

TEMA Nº 1. Conjuntos numéricos TEMA Nº 1 Conjuntos numéricos Aprendizajes esperados: Utilizar y clasificar los distintos conjuntos numéricos en sus diversas formas de expresión, tanto en las ciencias exactas como en las ciencias sociales

Más detalles

Preparación para Álgebra universitaria con trigonometría

Preparación para Álgebra universitaria con trigonometría Preparación para Álgebra universitaria con trigonometría Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares.

Más detalles

UNIDAD DE APRENDIZAJE II

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE II NÚMEROS RACIONALES Jerarquía de Operaciones En matemáticas una operación es una acción realizada sobre un número (en el caso de la raíz y potencia) o donde se involucran dos números

Más detalles

UNIDAD 1: NÚMEROS RACIONALES OBJETIVOS

UNIDAD 1: NÚMEROS RACIONALES OBJETIVOS UNIDAD 1: NÚMEROS RACIONALES Distinguir las distintas interpretaciones de una fracción. Reconocer fracciones equivalentes. Amplificar fracciones. Simplificar fracciones hasta obtener la fracción irreducible.

Más detalles

Ecuación Función cuadrática

Ecuación Función cuadrática Eje temático: Álgebra y funciones Contenidos: Función cuadrática - Ecuaciones de segundo grado Traslaciones de función cuadrática y función raíz Nivel: 3 Medio Ecuación Función cuadrática 1. Ecuación cuadrática

Más detalles

TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19

TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19 TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19 Introducción 19 Lenguaje común y lenguaje algebraico 22 Actividad 1 (Lenguaje común y lenguaje algebraico) 23 Actividad 2 (Lenguaje común y

Más detalles

Las operaciones con números irracionales

Las operaciones con números irracionales Las operaciones con números irracionales Antes de empezar a sumar, restar, multiplicar, y realizar cualquier tipo de las operaciones con números irracionales, debemos comprender como extraer, e introducir

Más detalles

Expresiones algebraicas

Expresiones algebraicas Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas

Más detalles

5º Básico. Objetivos de Aprendizaje a Evaluar:

5º Básico. Objetivos de Aprendizaje a Evaluar: Royal American School. Objetivos de Aprendizajes, habilidades y contenidos incorporados en Prueba de Relevancia de Matemática de 5º Básico a 8º Básico I Semestre Año 2013. 5º Básico Objetivos de Aprendizaje

Más detalles

1. OPERATORIA ALGEBRAICA 1.1 TÉRMINOS SEMEJANTES

1. OPERATORIA ALGEBRAICA 1.1 TÉRMINOS SEMEJANTES MATEMÁTICA MÓDULO 1 Eje temático: Álgebra 1. OPERATORIA ALGEBRAICA 1.1 TÉRMINOS SEMEJANTES Se denominan términos semejantes a aquellos que tienen la misma parte literal. Por ejemplo: -2a 2 b y 5a 2 b son

Más detalles

TEORIA DE EXPONENTES ING. CRISTHIAN VELANDIA

TEORIA DE EXPONENTES ING. CRISTHIAN VELANDIA TEORIA DE EXPONENTES ING. CRISTHIAN VELANDIA Conceptos preliminares. Epresión algebraica.- es el conjunto de letras y números interrelacionados entre si, mediante las operaciones de adición y sustracción,

Más detalles

Álgebra 2. Plan de estudios (305 temas)

Álgebra 2. Plan de estudios (305 temas) Álgebra 2 Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales pueden personalizar el

Más detalles

2. EXPRESIONES ALGEBRAICAS

2. EXPRESIONES ALGEBRAICAS 2. EXPRESIONES ALGEBRAICAS Tales como, 2X 2 3X + 4 ax + b Se obtienen a partir de variables como X, Y y Z, constantes como -2, 3, a, b, c, d y cobinadas utilizando la suma, resta, multiplicación, división

Más detalles

Matemática 2 Módulo 1

Matemática 2 Módulo 1 Matemática Módulo Contenidos: Números reales. Repaso de racionales. Decimales periódicos, puros y mixtos. Irracionales. Operaciones con radicales. Racionalización. Actividades de inicio, desarrollo y cierre.

Más detalles

RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO

RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO 2015-2016 UNIDAD 1: NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número

Más detalles

Preparación para Álgebra 1 de Escuela Superior

Preparación para Álgebra 1 de Escuela Superior Preparación para Álgebra 1 de Escuela Superior Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales

Más detalles

Números. Conjuntos numéricos

Números. Conjuntos numéricos Contenidos: Conjuntos numéricos Nivel: 1 Medio Números. Conjuntos numéricos 1. Conjuntos numéricos Los conjuntos numéricos con los que has trabajado tanto en Enseñanza Básica como en Enseñanza Media, se

Más detalles

GUÍA DE APRENDIZAJE. PROCESO: Prestación del Servicio / Educación Superior

GUÍA DE APRENDIZAJE. PROCESO: Prestación del Servicio / Educación Superior GUÍA UNIDAD No. 04 Programa: Procesos Aduaneros Semestre: Primero 2012 Asignatura: Matemáticas Básicas Nombre Unidad: Factorización Subtemas: Casos de factorización Metodología de Formación: Presencial

Más detalles

CURSO PROPEDÉUTICO 2017

CURSO PROPEDÉUTICO 2017 CURSO PROPEDÉUTICO 2017 1 FUNDAMENTOS DE MATEMÁTICAS OBJETIVO Formar estudiantes altamente capacitados, que cuenten con competencias y conocimientos para construir y utilizar técnicas que contribuyan a

Más detalles

Mó duló 06: Á lgebra Elemental II

Mó duló 06: Á lgebra Elemental II INTERNADO MATEMÁTICA 016 Guía para el Estudiante Mó duló 06: Á lgebra Elemental II Objetivo: Factorizar expresiones algebraicas y generalizar la operatoria de fracciones por medio del álgebra, que le permita

Más detalles

Tema 2 Algebra. Expresiones algebraicas Índice

Tema 2 Algebra. Expresiones algebraicas Índice Tema 2 Algebra. Expresiones algebraicas Índice 1. Expresiones algebraicas comunes... 2 2. Valor numérico de una expresión algebraica... 2 3. Tipos de expresiones algebraicas... 2 4. Monomios... 2 4.1.

Más detalles

TEMARIO PRUEBA DE SÍNTESIS MATEMÁTICA SÉPTIMO BÁSICO

TEMARIO PRUEBA DE SÍNTESIS MATEMÁTICA SÉPTIMO BÁSICO SÉPTIMO BÁSICO NÚMEROS ENTEROS : Interpretación de números enteros Orden, comparación y ubicación de números enteros Inverso Aditivo (Opuesto) y Valor Absoluto Suma, resta, multiplicación y división de

Más detalles

Ámbito Científico-Tecnológico Módulo IV Bloque 2 Unidad 1 Tan real como la vida misma

Ámbito Científico-Tecnológico Módulo IV Bloque 2 Unidad 1 Tan real como la vida misma Ámbito Científico-Tecnológico Módulo IV Bloque 2 Unidad 1 Tan real como la vida misma Estamos acostumbrados a trabajar con números naturales o enteros en la vida cotidiana pero en algunas ocasiones tendrás

Más detalles

UNIDAD 1 CONCEPTOS BÁSICOS. Números naturales, Números enteros, Números racionales, números irracionales y números reales. Dr. Daniel Tapia Sánchez

UNIDAD 1 CONCEPTOS BÁSICOS. Números naturales, Números enteros, Números racionales, números irracionales y números reales. Dr. Daniel Tapia Sánchez UNIDAD 1 CONCEPTOS BÁSICOS Números naturales, Números enteros, Números racionales, números irracionales y números reales Dr. Daniel Tapia Sánchez 1.1 Números Naturales (N) 1.1.1 Consecutividad numérica

Más detalles

Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales Ejercicios Orden y valor absoluto...

Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales Ejercicios Orden y valor absoluto... ÍNDICE Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales... 3 Ejercicios... 5 Orden y valor absoluto... 6 Ejercicios... 7 Suma de números reales... 9 Reglas

Más detalles

; En este término algebraico, tenemos que 3 es el factor numérico y el coeficiente literal.

; En este término algebraico, tenemos que 3 es el factor numérico y el coeficiente literal. Álgebra Término algebraico: es el producto y/o división de una o más variables (factor literal) y un coeficiente o factor numérico. Por ejemplo: el cálculo del área de un triángulo la rapidez media ; En

Más detalles

Pre-Universitario Manuel Guerrero Ceballos

Pre-Universitario Manuel Guerrero Ceballos Pre-Universitario Manuel Guerrero Ceballos Clase N 02 Operatoria Resumen de la clase anterior NÚMEROS Conjuntos numéricos Definiciones Orden Q Q* IN IN 0 R II C 9 número impar múltiplos {9, 18, 27, } divisores

Más detalles

ÍNDICE. Unidad I Conjuntos 10. Unidad II Sistemas de numeración 70. Presentación... 9

ÍNDICE. Unidad I Conjuntos 10. Unidad II Sistemas de numeración 70. Presentación... 9 ÍNDICE Presentación... 9 Unidad I Conjuntos 10 Antes de empezar... 12 1 Idea intuitiva de un conjunto... 13 2 Cardinalidad de un conjunto... 20 3 Concepto de conjunto universal, subconjunto; conjuntos

Más detalles

Elevar a la cuarto potencia. " " raíz Elevar a " " potencia.

Elevar a la cuarto potencia.   raíz Elevar a   potencia. ECUACIONES IRRACIONALES Suponga que su profesor ha dado instrucciones a los miembros de su clase de matemáticas que en parejas, encuentren la longitud de un segmento de línea. Usted recibe unidades de

Más detalles

*Número natural, el que sirve para designar la cantidad de. *El cero, a veces, se excluye del conjunto de los números

*Número natural, el que sirve para designar la cantidad de. *El cero, a veces, se excluye del conjunto de los números *Número natural, el que sirve para designar la cantidad de elementos que tiene un cierto conjunto, y se llama cardinal de dicho conjunto. *Los números naturales son infinitos. El conjunto de todos ellos

Más detalles

Potencias de exponente entero o fraccionario y radicales sencillos

Potencias de exponente entero o fraccionario y radicales sencillos Potencias de exponente entero o fraccionario y radicales sencillos I. Potencias de exponente entero La potencia es una operación matemática que sirve para representar la multiplicación de un número por

Más detalles

Nombre del estudiante: Grupo: Hora: Salón:

Nombre del estudiante: Grupo: Hora: Salón: Instituto Tecnológico de Saltillo. Cuadernillo de Ejercicios de Álgebra. CURSO DE NIVELACIÓN DE ÁLGEBRA 2013 Nombre del estudiante: Grupo: Hora: Salón: CONTENIDO DEL CUADERNILLO. UNIDAD NÚMEROS REALES.

Más detalles

Expresión C. numérico Factor literal 9abc 9 abc

Expresión C. numérico Factor literal 9abc 9 abc GUÍA DE REFUERZO DE ÁLGEBRA Un término algebraico es el producto de una o más variables (llamado factor literal) y una constante literal o numérica (llamada coeficiente). Ejemplos: 3xy ; 45 ; m Signo -

Más detalles

UNIDAD 1. NÚMEROS. (Página 223 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico.

UNIDAD 1. NÚMEROS. (Página 223 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico. UNIDAD 1. NÚMEROS. (Página 22 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico. Clasificación de los números Números naturales son aquellos que utilizamos para contar. N = 0,1,2,,,5,6, Números

Más detalles

Operatoria con Potencias y Raíces

Operatoria con Potencias y Raíces PreUnAB Clase # 3 Junio 2014 Definición Se llama potencia a una expresiń de la forma, donde a es la base y n es el exponente. Potencia de Exponente Entero a n = a a a... a Cuando el exponente es un número

Más detalles

Capítulo 3: POTENCIAS Y RAÍCES. TEORÍA. Matemáticas 1º y 2º de ESO

Capítulo 3: POTENCIAS Y RAÍCES. TEORÍA. Matemáticas 1º y 2º de ESO 19 1. POTENCIAS Capítulo 3: POTENCIAS Y RAÍCES.. Matemáticas 1º y 2º de ESO 1.1. Concepto de potencia. Base y exponente Ejemplo 1: María guarda 5 collares en una bolsa, cada 5 bolsas en una caja y cada

Más detalles

CONJUTOS NÚMERICOS NÚMEROS NATURALES

CONJUTOS NÚMERICOS NÚMEROS NATURALES CONJUTOS NÚMERICOS NÚMEROS NATURALES El conjunto de números naturales tiene gran importancia en la vida práctica ya que con sus elementos se pueden encontrar elementos u objetos de otros conjuntos. El

Más detalles

TERMINOS HOMOGENEOS: Son los que tienen el mismo grado absoluto, son homogéneos porque ambos son de quinto grado absoluto.

TERMINOS HOMOGENEOS: Son los que tienen el mismo grado absoluto, son homogéneos porque ambos son de quinto grado absoluto. TERMINOS HOMOGENEOS: Son los que tienen el mismo grado absoluto, son homogéneos porque ambos son de quinto grado absoluto. 4xy y 6xy. Hallando la suma de los exponentes: 4 + 1 = 5 2 + 3 = 5 TERMINOS HETEROGENEOS:

Más detalles

LOGRO: Reconoce distintas representaciones de los números reales y usa sus propiedades para resolver Problemas.

LOGRO: Reconoce distintas representaciones de los números reales y usa sus propiedades para resolver Problemas. ESTANDARES Utilizo números reales en sus diferentes representaciones y en diversos contextos. Resuelvo problemas y simplifico cálculos usando propiedades y relaciones de los números reales y de las relaciones

Más detalles

Cantidades imaginarias - numeros complejos

Cantidades imaginarias - numeros complejos Cantidades imaginarias - numeros complejos Las operaciones directas (Suma, multiplicación y potenciación) no crearon problema de cálculo, por ser siempre realizables. En cambio las operaciones inversas

Más detalles

BOLETIN Nº 4 MATEMÁTICAS 3º ESO Operaciones con radicales

BOLETIN Nº 4 MATEMÁTICAS 3º ESO Operaciones con radicales Radicales " Raíz: se llama raíz de un número o de una expresión algebraica a todo número o expresión algebraica que elevada a una potencia "n"; reproduce la expresión dada. " Elementos de la raíz. - Radical:

Más detalles

MATEMÁTICA - 4to... - Prof. Sandra Corti

MATEMÁTICA - 4to... - Prof. Sandra Corti El conjunto de los números reales (R) está formado por el conjunto de los números racionales (Q) y los números irracionales (I). DEFINICIÓN RAÍZ ENÉSIMA DE UN NÚ- MERO Llamamos raíz enésima de un nro.

Más detalles

1 of 16 10/25/2011 6:38 AM

1 of 16 10/25/2011 6:38 AM http://tutorias.upra.edu/mod/book/print.php?id42119 Prof. Anneliesse Sánchez Departamento de Matemáticas Universidad de Puerto Rico en Arecibo Objetivos: Hallar raíces cuadradas exactas de: enteros fracciones

Más detalles

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite

Más detalles

SERIE INTRODUCTORIA. REPASO DE ALGEBRA.

SERIE INTRODUCTORIA. REPASO DE ALGEBRA. SERIE INTRODUCTORIA. REPASO DE ALGEBRA. 1.- REDUCCION DE TÉRMINOS SEMEJANTES. Recuerde que los términos semejantes son aquellos que tienen las mismas letras con los mismos exponentes. Ejemplos: *7m; 5m

Más detalles

TEMA 2. Números racionales. Teoría. Matemáticas

TEMA 2. Números racionales. Teoría. Matemáticas 1 1.- Números racionales Se llama número racional a todo número que puede representarse como el cociente de dos enteros, con denominador distinto de cero. Se representa por Las fracciones también pueden

Más detalles

Potencias de exponente racional. Propiedades

Potencias de exponente racional. Propiedades INSTITUTO TECNICO MARIA INMACULADA Formando líderes estudiantiles para un futuro mejor Coordinación Vo. Bo. Eje temático: POTENCIAS Y RAICES EN LOS NUMEROS REALES Área: MATEMÁTICAS Asignatura: Matemáticas

Más detalles

53 ESO ÍNDICE: 1. EXPRESIONES ALGEBRAICAS 2. MONOMIOS 3. POLINOMIOS 4. IDENTIDADES 5. DIVISIÓN DE POLINOMIOS 6. FRACCIONES ALGEBRAICAS

53 ESO ÍNDICE: 1. EXPRESIONES ALGEBRAICAS 2. MONOMIOS 3. POLINOMIOS 4. IDENTIDADES 5. DIVISIÓN DE POLINOMIOS 6. FRACCIONES ALGEBRAICAS 53 ESO ÍNDICE: 1. EXPRESIONES ALGEBRAICAS. MONOMIOS 3. POLINOMIOS 4. IDENTIDADES 5. DIVISIÓN DE POLINOMIOS 6. FRACCIONES ALGEBRAICAS El lenguaje algebraico 5. 1 1. EXPRESIONES ALGEBRAICAS LENGUAJE ALGEBRAICO

Más detalles

5.- Potencia de 1 Un número racional elevado a 1 es igual a sí mismo.

5.- Potencia de 1 Un número racional elevado a 1 es igual a sí mismo. POTENCIAS DE EXPONENTE ENTERO Y BASE RACIONAL 1.- 2.- 3.- PROPIEDADES DE LAS POTENCIAS DE NÚMEROS RACIONALES Pulsa en las siguientes pestañas para analizar cada una de las propiedades de la multiplicación:

Más detalles

7 4 = Actividades propuestas 1. Calcula mentalmente las siguientes potencias y escribe el resultado en tu cuaderno: exponente. base.

7 4 = Actividades propuestas 1. Calcula mentalmente las siguientes potencias y escribe el resultado en tu cuaderno: exponente. base. 21 21 CAPÍTULO : Potencias y raíces. Matemáticas 2º de ESO 1. POTENCIAS Ya conoces las potencias. En este aparato vamos a revisar la forma de trabajar con ellas. 1.1. Concepto de potencia. Base y exponente

Más detalles

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma. FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto

Más detalles

UNIDAD VI.-OPERACIONES CON FRACCIONES ALGEBRAICAS. Como podrás recordar, en fracciones numéricas,, para simplificarlas era muy sencillo, pues por

UNIDAD VI.-OPERACIONES CON FRACCIONES ALGEBRAICAS. Como podrás recordar, en fracciones numéricas,, para simplificarlas era muy sencillo, pues por UNIDAD VI.-OPERACIONES CON FRACCIONES ALGEBRAICAS Simplificación de Fracciones Algebraicas 8 Como podrás recordar, en fracciones numéricas,, para simplificarlas era mu sencillo, pues por 5 5 ejemplo para

Más detalles

Universidad de Puerto Rico en Aguadilla Departamento de Matemáticas PRONTUARIO

Universidad de Puerto Rico en Aguadilla Departamento de Matemáticas PRONTUARIO Universidad de Puerto Rico en Aguadilla Departamento de Matemáticas PRONTUARIO Profesor : Nombre del Estudiante : Oficina : Sección : Horas de Oficina : Página Internet : http://math.uprag.edu I. Título

Más detalles

POTENCIACION POTENCIA

POTENCIACION POTENCIA POTENCIACION POTENCIA Los babilonios utilizaban la elevación a potencia como auxiliar de la multiplicación, y los griegos sentían especial predilección por los cuadrados y los cubos. Diofanto (III d.c.)

Más detalles

ENSEÑANZA BASICA COLEGIO JUAN IGNACIO MOLINA POSTULANTES A 7º BÁSICO

ENSEÑANZA BASICA COLEGIO JUAN IGNACIO MOLINA POSTULANTES A 7º BÁSICO ENSEÑANZA BASICA POSTULANTES A 7º BÁSICO - Género literario (Comprensión Lectora) - Texto argumentativo - Vocabulario - Medios de comunicación masiva - Factores y múltiplos. - Números primos y compuestos,

Más detalles

Matemáticas. Matías Puello Chamorro. Algebra Operativa. 9 de agosto de 2016

Matemáticas. Matías Puello Chamorro. Algebra Operativa.  9 de agosto de 2016 Matemáticas Algebra Operativa Matías Puello Chamorro http://www.unilibrebaq.edu.co 9 de agosto de 2016 Índice 1. Introducción 3 2. Definiciones básicas del Algebra 4 2.1. Definición de igualdad............................

Más detalles

UNIDAD 4. POLINOMIOS. (PÁGINA 263)

UNIDAD 4. POLINOMIOS. (PÁGINA 263) UNIDAD 4. POLINOMIOS. (PÁGINA 263) LENGUAJE ALGEBRAICO Una expresión algebraica es aquella que combina: números, operaciones y letras. Ejemplos de expresiones algebraicas: 3 + x x 2 y x + y x 2 y LENGUAJE

Más detalles

UNIDAD III. EXPONENTES Y RADICALES. RAZONES, PROPORCIONES Y VARIACIONES.

UNIDAD III. EXPONENTES Y RADICALES. RAZONES, PROPORCIONES Y VARIACIONES. UNIDAD III. EXPONENTES Y RADICALES. RAZONES, PROPORCIONES Y VARIACIONES. Ley asociativa El producto de tres o más números, es el mismo sin importar la manera en que se agrupan al multiplicarlos. abc=(ac)b=c(ab)

Más detalles

UNIDAD II: CONJUNTOS NUMÉRICOS

UNIDAD II: CONJUNTOS NUMÉRICOS Presentación En esta unidad se aborda el estudio de los conjuntos numéricos, la operatoria y propiedades en ellos, dando énfasis al trabajo de operatoria básica en IR, potencias, raíces y logaritmos. En

Más detalles

POLINOMIOS. El grado de un monomio es la suma de todos los exponentes de las letras o variables.

POLINOMIOS. El grado de un monomio es la suma de todos los exponentes de las letras o variables. RESUMEN Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas

Más detalles

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Y POLINOMIOS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Y POLINOMIOS EXPRESIONES ALGEBRAICAS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman VARIABLES, INCÓGNITAS o INDETERMINADAS

Más detalles

Exponentes, Raíces y Radicales. Números Reales

Exponentes, Raíces y Radicales. Números Reales Exponentes y Exponentes Fraccionarios, Raíces y Exponentes, Raíces y en los Números Reales Carlos A. Rivera-Morales Precálculo I Exponentes, Raíces y Tabla de Contenido Contenido Exponentes y Exponentes

Más detalles

1. EXPRESIONES ALGEBRAICAS.

1. EXPRESIONES ALGEBRAICAS. TEMA 3: POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS

UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS C u r s o : Matemática Material N 15 UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS GUÍA TEÓRICO PRÁCTICA Nº 1 EVALUACIÓN DE EXPRESIONES ALGEBRAICAS Evaluar una expresión algebraica consiste en sustituir

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles

TEMA 1. Números Reales. Teoría. Matemáticas

TEMA 1. Números Reales. Teoría. Matemáticas 1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo

Más detalles

Trabajo de Matemáticas AMPLIACIÓN 3º ESO

Trabajo de Matemáticas AMPLIACIÓN 3º ESO Trabajo de Matemáticas AMPLIACIÓN º ESO ACTIVIDADES DE AMPLIACIÓN TEMA : NÚMEROS FRACCIONARIOS O RACIONALES Problema nº Un grifo tarda en llenar un depósito horas y otro tarda en llenar el mismo depósito

Más detalles

Números Racionales. a, siendo a y b números enteros, con b. distinto de 0.

Números Racionales. a, siendo a y b números enteros, con b. distinto de 0. Números Racionales Al dividir dos números enteros, no siempre resulta otro número entero. Esto llevó a la necesidad de ampliar el conjunto Z y dar paso a un nuevo conjunto, llamado de los Números Racionales

Más detalles

Lic. Manuel de Jesús Campos Boc

Lic. Manuel de Jesús Campos Boc UNIVERSIDAD MARIANO GÁLVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CENTRO UNIVERSITARIO DE VILLA NUEVA CURSO MATEMÁTICAS APLICADA I 015 Lic. Manuel

Más detalles

TEMA 4: EXPRESIONES ALGEBRAICAS.

TEMA 4: EXPRESIONES ALGEBRAICAS. TEMA 4: EXPRESIONES ALGEBRAICAS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. CURSO 2011-2012 Página 1 de 14 Profesor: Manuel González de León Curso

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles

FUNDAMENTOS NUMÉRICOS

FUNDAMENTOS NUMÉRICOS SEMANA 3 ÍNDICE ECUACIONES... 3 APRENDIZAJES ESPERADOS... 3 INTRODUCCIÓN... 3 PROPIEDADES DE LA IGUALDAD... 4 ECUACIONES... 4 ECUACIONES LINEALES... 4 ECUACIONES CUADRÁTICAS... 5 RESOLUCIÓN DE UNA ECUACIÓN

Más detalles

CEPA Rosalía de Castro. Fundamentos de Matemáticas Tema 4: Expresiones algebraicas

CEPA Rosalía de Castro. Fundamentos de Matemáticas Tema 4: Expresiones algebraicas TEMA 4. Expresiones algebraicas: 1. Una expresión algebraica es una expresión formada por operadores algebraicos que combinan operandos que pueden ser letras o números. Las letras se llaman variables y

Más detalles

RESUMEN DEL MÓDULO. Aprendizajes Esperados

RESUMEN DEL MÓDULO. Aprendizajes Esperados RESUMEN DEL MÓDULO MÓDULO: INTRODUCCIÓN A LA MATEMÁTICA UNIDAD DE COMPETENCIA: Resolver problemas matemáticos relacionados con el mundo de la economía, los negocios, la tecnología y otros fenómenos socioeconómicos,

Más detalles

CONTENIDOS EXÁMEN DE ADMISIÓN MATEMÁTICA SEGUNDO BÁSICO 2017

CONTENIDOS EXÁMEN DE ADMISIÓN MATEMÁTICA SEGUNDO BÁSICO 2017 SEGUNDO BÁSICO 2017 DEPARTAMENTO ÁMBITO NUMÉRICO 0-50 - Escritura al dictado - Antecesor y sucesor - Orden (menor a mayor y viceversa) - Patrones de conteo ascendente (2 en 2, 5 en 5, 10 en 10) - Comparación

Más detalles

Es aquel formado por todos los elementos involucrados en el problema.

Es aquel formado por todos los elementos involucrados en el problema. 1. TEORÍA DE CONJUNTOS CONCEPTO DE PERTENENCIA: "ð" Sea el conjunto A = ða, bð ð a ð A ð b ð A ð c ð A CONCEPTO DE SUBCONJUNTO: "ð" A ð B ð ð x ð A ð x ð B, ð x ð ð ð A, ð A A ð A, ð A CONJUNTOS ESPECIALES

Más detalles

ECUACIONES. Resuelve, con sentido común, las siguientes ecuaciones... 3º ESO. PARA PRACTICAR : LIBRO [ PÁG. 102 / Nº 2, 3, 4 ] mn

ECUACIONES. Resuelve, con sentido común, las siguientes ecuaciones... 3º ESO. PARA PRACTICAR : LIBRO [ PÁG. 102 / Nº 2, 3, 4 ] mn ECUACIONES Comprender el lenguaje algebraico para resolver ecuaciones Resuelve, con sentido común, las siguientes ecuaciones... 3º ESO. PARA PRACTICAR : LIBRO [ PÁG. 102 / Nº 2, 3, 4 ] mn Estudiar en el

Más detalles

CONTENIDOS MÍNIMOS 1ºESO. -Realización de las cuatro operaciones (suma, resta, multiplicación y división) mediante los algoritmos tradicionales.

CONTENIDOS MÍNIMOS 1ºESO. -Realización de las cuatro operaciones (suma, resta, multiplicación y división) mediante los algoritmos tradicionales. DEPARTAMENTO DE: MATERIA: CONTENIDOS MÍNIMOS Matemáticas Matemáticas 1ºESO Números naturales y enteros: -Comparar y ordenar números. -Representar en la recta. -Realización de las cuatro operaciones (suma,

Más detalles

El curso está dividido en tres evaluaciones, de acuerdo con la programación general del Colegio, temporalizados así:

El curso está dividido en tres evaluaciones, de acuerdo con la programación general del Colegio, temporalizados así: b) Distribución temporal de las unidades didácticas El curso está dividido en tres evaluaciones, de acuerdo con la programación general del Colegio, temporalizados así: 1ª EVALUACIÓN Tema 1 Tema 2 Tema

Más detalles

Resumen anual de Matemática 1ª Convocatoria: jueves 24 de noviembre, 2016 Octavo nivel 2ª Convocatoria: miércoles 1 de febrero, 2017 broyi.jimdo.

Resumen anual de Matemática 1ª Convocatoria: jueves 24 de noviembre, 2016 Octavo nivel 2ª Convocatoria: miércoles 1 de febrero, 2017 broyi.jimdo. Resumen anual de Matemática 1ª Convocatoria: jueves 4 de noviembre, 016 Octavo nivel ª Convocatoria: miércoles 1 de febrero, 017 broyi.jimdo.com Contenidos Los números... Objetivo 1... El conjunto de los

Más detalles

I.E.S. El Galeón Curso CONTENIDOS MÍNIMOS MATEMÁTICAS 1º E.S.O.

I.E.S. El Galeón Curso CONTENIDOS MÍNIMOS MATEMÁTICAS 1º E.S.O. Números naturales y enteros: -Comparar y ordenar números. -Representar en la recta. MATEMÁTICAS 1º E.S.O. -Realización de las cuatro operaciones (suma, resta, multiplicación y división) -Potencias con

Más detalles

Signos del álgebra. Notación algebraica. a) Signos de operación. b) Signos de relación. c) Signos de agrupación. a) Los signos de operación son:

Signos del álgebra. Notación algebraica. a) Signos de operación. b) Signos de relación. c) Signos de agrupación. a) Los signos de operación son: Notación algebraica Al estudiar el lenguaje algebraico observamos la relación entre signos, letras y números a lo que llamamos notación algebraica. A continuación estudiaremos los elementos que son básicos

Más detalles

Operatoria algebraica. Actividad Es muy potente!

Operatoria algebraica. Actividad Es muy potente! Nivel: 1º Medio Sector: Matemática Unidad temática: Operatoria algebraica. Actividad Los microscopios compuestos usan dos o más lentes para aumentar el tamaño de una imagen. Cómo lo harán? Qué ocurre si

Más detalles

TEMA 2: ÁLGEBRA 1. TEOREMA DEL RESTO Y APLICACIONES

TEMA 2: ÁLGEBRA 1. TEOREMA DEL RESTO Y APLICACIONES TEMA 2: ÁLGEBRA 1. TEOREMA DEL RESTO Y APLICACIONES Dado un polinomio P(x) y un número real a, el resto de la división de P(x) entre (x a) es P(a) (es decir, el resultado de sustituir el valor de x por

Más detalles

MATERIALES: Cuaderno de 100h cuadriculado, block de hojas milimetradas, calculadora, lápiz, borrador, lapicero de color verde

MATERIALES: Cuaderno de 100h cuadriculado, block de hojas milimetradas, calculadora, lápiz, borrador, lapicero de color verde MATERIALES: Cuaderno de 00h cuadriculado, block de hojas milimetradas, calculadora, lápiz, borrador, lapicero de color verde FACTORIZACION - Casos de Factorización - Factor común - Factor común por agrupación

Más detalles

Preparación matemática para la física universitaria

Preparación matemática para la física universitaria Preparación matemática para la física universitaria Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares. Plan

Más detalles

DEPARTAMENTO DE MATEMÁTICAS MATEMÁTICAS 1º DE ESO PRIMER TRIMESTRE

DEPARTAMENTO DE MATEMÁTICAS MATEMÁTICAS 1º DE ESO PRIMER TRIMESTRE DEPARTAMENTO DE MATEMÁTICAS MATEMÁTICAS 1º DE ESO PRIMER TRIMESTRE OBJETIVOS, CONTENIDOS Y CRITERIOS DE EVALUACIÓN DESARROLLADOS EN EL TRIMESTRE OBJETIVOS Realizar las operaciones con números naturales

Más detalles

OPERACIONES CON MONOMIOS Y POLINOMIOS. Suma de monomios

OPERACIONES CON MONOMIOS Y POLINOMIOS. Suma de monomios OPERACIONES CON MONOMIOS Y POLINOMIOS Suma de monomios Sólo podemos sumar monomios semejantes. La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 1º Año Ciclo Básico de Secundaria Teoría Nº 2 Segundo Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 1º Año Ciclo Básico de Secundaria Teoría Nº 2 Segundo Trimestre CONJUNTO DE LOS NÚMEROS ENTEROS Los números enteros están formados por: los números naturales (o enteros positivos y el cero) y los números negativos. El cero no tiene signo, no es ni positivo ni negativo.

Más detalles

MONOMIOS Y POLINOMIOS

MONOMIOS Y POLINOMIOS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas y se representan por letras.

Más detalles
Sitemap