RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO"

Transcripción

1 OBJETIVO RECONOCER EL GRADO, EL TÉRMINO Y LOS COEICIENTES DE UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma de monomios, que son los términos del polinomio. Un polinomio es reducido cuando no tiene monomios semejantes. El grado de un polinomio reducido coincide con el grado de su término de mayor grado. Un polinomio es completo cuando tiene términos de todos los grados inferiores al grado del polinomio. En caso contrario, es incompleto. Dado el polinomio P(x) = 5x x + x + : a) Obtén el polinomio reducido. b) Determina el grado del polinomio. c) Cuántos términos tiene el polinomio? Cuál es su término independiente? d) Es un polinomio completo? Si el polinomio es incompleto, di qué término falta. a) Para reducir un polinomio hay que resolver las operaciones que se puedan: 678 P(x) = 5x x + x + = P(x) = 5x x 44 Polinomio reducido b) El grado del polinomio es : P(x) = 5x x. c) El polinomio tiene tres términos y es el término independiente. P(x) = 5x x es el término independiente. Tiene tres términos. d) P(x) = 5x x es un polinomio completo. Grado 0 Es Q(x) = 7x + x + un polinomio completo o incompleto? Q(x) = 7x + x + Es un polinomio incompleto, pues no tiene término de grado. Grado 0 Calcula el polinomio reducido. a) P(x) = 4 x + x x + b) P(x) = x 4 4 x + x x + x 4 x Polinomios

2 Calcula el polinomio reducido y ordena sus términos de mayor a menor grado. P(x) = x 5 x 4 + x + 4x 4 x + x + 5 P(x) = Tiene... términos. El término independiente es... El grado del polinomio es... Cómo es el polinomio, completo o incompleto?... Reduce el polinomio y ordena sus términos de mayor a menor grado. P(x) = x x x + x x P(x) = Tiene... términos. El término independiente es... El grado del polinomio es... Cómo es el polinomio, completo o incompleto?... 4 Señala si los siguientes polinomios son completos o incompletos. Completa la tabla. POLINOMIO COMPLETO INCOMPLETO ALTA EL TÉRMINO P(x) = 4x + 5x Q(x) = x R(x) = 0x 0x + 40 S(x) = 40 T(x) = x + x + Dado el polinomio Q(x) = x 5 + x x, indica. a) Si es o no ordenado. b) Si es o no reducido. c) Si es o no completo. d) Su grado. e) Su término independiente. ADAPTACIÓN CURRICULAR Polinomios

3 OBJETIVO DETERMINAR EL VALOR NUMÉRICO DE UN POLINOMIO NOMBRE: CURSO: ECHA: El valor numérico de un polinomio P(x), para cierto valor de la variable x = a, se obtiene sustituyendo x por a y operando. En un polinomio, por ejemplo, P(x) = x +, se puede dar cualquier valor a la x. Para x = P() = () + = 4 + = 8 + = 9 El valor numérico del polinomio para x = es 9. Para x = 0 P(0) = (0) + = 00 + = 00 + = 0 El valor numérico del polinomio para x = 0 es 0. Calcula el valor numérico de los siguientes polinomios para x =. a) P(x) = x + x = P( ) = ( ) + b) P(x) = x + c) P(x) = x + d) P(x) = x 4 + Calcula el valor numérico de cada polinomio para el valor de la variable indicado. a) A(x) = x +, para x =. b) B(x) = 4x 5 6x +, para x =. c) C(x) = 9x 4 + 7x + 5, para x =. d) D(x) = x + x + x +, para x =. Polinomios

4 OBJETIVO REALIZAR SUMAS Y RESTAS CON POLINOMIOS NOMBRE: CURSO: ECHA: La suma de dos polinomios se calcula sumando los términos semejantes de ambos. La resta de dos polinomios se obtiene sumando el primero con el polinomio opuesto del segundo. Recuerda que la regla básica de las sumas y restas de polinomios es que solo se pueden sumar y restar los términos semejantes. Suma los siguientes polinomios: P(x) = x x + 5x y Q(x) = 4x x +. Se puede realizar de dos maneras: En línea: solo se suman los elementos iguales. P(x) + Q(x) = x x + 5x + 4x x + = x + x + x P(x) + Q(x) = x + x + x En columna: hay que poner en columna los términos semejantes. P(x) = x x + 5x + Q(x) = 4x x + P(x) + Q(x) = x + x + x Resta los siguientes polinomios: P(x) = x 5x + 5 y Q(x) = 5x x + 7. Se puede realizar de dos maneras: En línea: el signo negativo delante del paréntesis afecta a todos los términos. P(x) Q(x) = x 5x + 5 (5x x + 7) = = x 5x + 5 5x + x 7 = x 0x + x P(x) Q(x) = x 0x + x En columna: hay que poner en columna los términos semejantes. P(x) = x 5x + x + 5 Q(x) = (5x x + 7) P(x) Q (x) = x 0x + x Dados los polinomios P(x) = x x + y Q(x) = x x +, halla P(x) + Q(x) y P(x) Q(x), resolviendo las operaciones en línea y en columna. ADAPTACIÓN CURRICULAR Polinomios 4

5 Calcula la suma y resta de cada par de polinomios. a) P(x) = x + x x 4 Q(x) = x x 9x + P(x) = P(x) = + Q(x) = Q(x) = P(x) + Q(x) = P(x) Q(x) = b) P(x) = x 7 8x 4 + Q(x) = x 5 + x 6 P(x) = P(x) = + Q(x) = Q(x) = P(x) + Q(x) = P(x) Q(x) = c) P(x) = 0x 4 + x + Q(x) = x 5 +7x x P(x) = P(x) = + Q(x) = Q(x) = P(x) + Q(x) = P(x) Q(x) = d) P(x) = x 4 x Q(x) = x 4 x x 5 P(x) = P(x) = + Q(x) = Q(x) = P(x) + Q(x) = P(x) Q(x) = e) P(x) = x x Q(x) = 6x 4 x x + 7 P(x) = P(x) = + Q(x) = Q(x) = P(x) + Q(x) = P(x) Q(x) = Polinomios 5

6 OBJETIVO 4 REALIZAR MULTIPLICACIONES CON POLINOMIOS NOMBRE: CURSO: ECHA: El producto de dos polinomios se halla multiplicando cada uno de los monomios de un polinomio por los monomios del otro, y sumando, después, los polinomios obtenidos en esas multiplicaciones. Para multiplicar dos polinomios es necesario aplicar la propiedad distributiva. Multiplica los siguientes polinomios: P(x) = 7x + x + x 7y Q(x) = x +. Vamos a resolverlo multiplicando en línea: P(x) Q(x) = (7x + x + x 7) (x + ) = Se multiplican todos los monomios de un polinomio por los monomios del otro polinomio. = 7x x + 7x + x x + x + x x + x 7 x 7 = 7x 5 + x + x 4 + 6x + x + x 7x = = 7x 5 + x 4 + x x + x P(x) Q(x) = 7x 5 + x 4 + x x + x Se suman los términos semejantes. Multiplica los siguientes polinomios. a) P(x) = 5x 7x + y Q(x) = x + P(x) Q(x) = (5x 7x + ) (x + ) Multiplicamos los monomios. P(x) Q(x) = = + = Sumamos los términos semejantes. ADAPTACIÓN CURRICULAR b) P(x) = x y Q(x) = 5x x + Polinomios 6

7 Multiplica los siguientes polinomios: P(x) = 7x + x + x 7y Q(x) = x +. Resolvemos el ejercicio multiplicando en columna: 7x + x + x 7 x + x + 6x + x 7x 5 + x 4 + x 7x + x P(x) Q(x) = 7x 5 + x 4 + x 7x + x Producto de por 7 x + x + x 7 Producto de x por 7 x + x + x 7 Suma de monomios semejantes Multiplica los polinomios: P(x) = 5x x + 4 y Q(x) = x +. 5x x + 4 x + P(x) Q(x) = Producto de por 5 x x + 4 Producto de x por 5 x x + 4 Suma de monomios semejantes Calcula el producto del polinomio R(x) = x y el monomio S(x) = x +, utilizando la propiedad distributiva. 4 Halla el producto de los siguientes polinomios. a) R(x) = x y S(x) = x b) R(x) = x 4 x + y S(x) = x + Polinomios 7

8 OBJETIVO 5 REALIZAR DIVISIONES CON POLINOMIOS NOMBRE: CURSO: ECHA: Lo primero que hay que tener en cuenta para dividir los polinomios P(x) y Q(x) es que el grado del polinomio P(x) debe ser mayor o igual que el del polinomio Q(x). En estas condiciones, dados dos polinomios P(x) y Q(x), existen otros dos polinomios C(x) y R(x) que cumplen: P(x) = Q(x) C(x) + R(x) P(x) es el polinomio dividendo. Q(x) es el polinomio divisor. C(x) es el polinomio cociente. R(x) es el polinomio resto. Si el resto de la división es nulo, es decir, si R(x) = 0: La división es exacta. El polinomio P(x) es divisible por Q(x). En caso contrario, se dice que la división no es exacta. Divide los siguientes polinomios: P(x) = 5x + x + 5x 7y Q(x) = x x + x + 5x 7 x + 5 Hay que elegir un monomio que multiplicado por x nos dé 5 x : x = 5 x. En este caso, = 5x. 5x + x + 5x 7 x + 5 5x + x 5x 5x + 5x + x 0x 7 5x + x + 5x 7 x + 5 5x + x 5x 5x + 5x + x 0x 7 5x x 0x 5 5x + x 0x Multiplicamos 5x por cada uno de los términos del polinomio cociente (x + 5), cambiamos de signo los resultados y los colocamos en su columna. A continuación, sumamos. Hay que buscar un monomio que multiplicado por x nos dé x, en este caso. Multiplicamos por x + 5, cambiamos de signo los resultados y los colocamos en su columna. A continuación, sumamos. Hay que buscar un monomio que multiplicado por x nos dé 0x, pero no existe ninguno. Por tanto, la división finaliza. ADAPTACIÓN CURRICULAR Polinomio dividendo: P(x) = 5x + x + 5x 7 Polinomio divisor: Q(x) = x + 5 Polinomio cociente: C(x) = 5x + Polinomio resto: R(x) = 0x En este caso, la división no es exacta, ya que el resto obtenido es distinto de cero. Polinomios 8

9 Calcula las divisiones de polinomios y señala si son exactas o enteras. a) P(x) = x, Q(x) = x c) P(x) = x, Q(x) = x + b) P(x) = x 5x + 6, Q(x) = x d) P(x) = x x + x, Q(x) = x Haz las divisiones y comprueba que P(x) = Q(x) C(x) + R(x). a) P(x) = x, Q(x) = x c) P(x) = x, Q(x) = x b) P(x) = x, Q(x) = x + d) P(x) = x +, Q(x) = x Polinomios 9

10 OBJETIVO 6 IDENTIICAR Y DESARROLLAR IGUALDADES NOTABLES NOMBRE: CURSO: ECHA: CUADRADO DE UNA SUMA El cuadrado de una suma es igual al cuadrado del primero, más el doble producto del primero por el segundo, más el cuadrado del segundo. (a + b) = a + ab + b Esto se puede hacer como una multiplicación normal: (a + b) = (a + b) (a + b) = a a + a b + a b + b b = a + ab + b (x + ) = (x + ) (x + ) = x + x + x + 9 = x + 6x + 9 (4x + y) = (4x + y) (4x + y) = 6x + 4xy + 4xy + y = 6x + 8xy + y Desarrolla estas igualdades. a) (x + y) = (x + y) (x + y) = b) (x + ) = c) (x + y) = d) (4a + b ) = CUADRADO DE UNA DIERENCIA El cuadrado de una diferencia es igual al cuadrado del primero, menos el doble producto del primero por el segundo, más el cuadrado del segundo. (a b) = a ab + b Esto se puede hacer como una multiplicación normal: (a b) = (a b) (a b) = a a a b a b + b b = a ab + b (y ) = (y ) (y ) = 4y 6y 6y + 9 = 4y y + 9 (x ) = (x ) (x ) = x 4 x x + 4 = x 4 4x + 4 ADAPTACIÓN CURRICULAR Desarrolla las siguientes igualdades. a) (6x 4y) = (6x 4y) (6x 4y) = b) (5x 4 ) = c) (x y) = d) (4x a ) = Polinomios 0

11 PRODUCTO DE UNA SUMA POR UNA DIERENCIA El producto de una suma por una diferencia es igual al cuadrado del primero menos el cuadrado del segundo. (a + b) (a b) = a b Esto se puede hacer como una multiplicación normal: (a + b) (a b) = a a a b + a b + b b = a b (x + ) (x ) = 9x 6x + 6x 4 = 9x 4 (5x y) (5x + y) = 5x + 5xy 5xy 9y = 5x 9y Desarrolla las siguientes igualdades. a) (7x + x 4 ) (7x x 4 ) = b) (y + x ) (y x ) = c) (x + x ) (x x ) = d) (a 4 b ) (a 4 + b) = 4 Desarrolla. a) (x + 5) = b) (y 7) = c) (xy + yz) (xy yz) = d) (abc + ) = e) (7 x) = f) (9v + z) (9v z) = g) (xy + x ) = 5 Desarrolla las igualdades. a) (4x + ) (5x + ) (x ) = b) (x + ) (x ) = Polinomios

OBJETIVOS CONTENIDOS PROCEDIMIENTOS

OBJETIVOS CONTENIDOS PROCEDIMIENTOS Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender el concepto de polinomio y otros asociados

Más detalles

(a+b) (a b)=a 2 b 2 OBJETIVOS CONTENIDOS PROCEDIMIENTOS

(a+b) (a b)=a 2 b 2 OBJETIVOS CONTENIDOS PROCEDIMIENTOS Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender el concepto de polinomio y otros asociados

Más detalles

Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO. Nombre: Curso: Fecha: F Cómo es el polinomio, completo o incompleto?

Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO. Nombre: Curso: Fecha: F Cómo es el polinomio, completo o incompleto? REPASO Y APOYO OBJETIVO 1 3 RECONOCER EL GRADO Y LOS ELEMENTOS QUE ORMAN UN POLINOMIO Nombre: Curso: echa: Un polinomio es una expresión algebraica formada por la suma algebraica de monomios, que son los

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS

OBJETIVOS CONTENIDOS PROCEDIMIENTOS 82652 _ 0275-0286.qxd 27/4/07 1:20 Página 275 Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender

Más detalles

EL GRADO Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO

EL GRADO Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO RECONOCER OBJETIVO EL GRADO Y LOS ELEMENTOS QUE ORMAN UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma algebraica de monomios, que son los términos del polinomio.

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas 829566 _ 0249-008.qxd 27/6/08 09:21 Página 27 Polinomios y fracciones algebraicas INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de

Más detalles

Partes de un monomio

Partes de un monomio Monomios Un monomio es una epresión algebraica en la que la únicas operaciones que afectan a las letras son la multiplicación y la potencia de eponente natural. Son monomios: NO son monomios: 1 yz 1 abc

Más detalles

La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes.

La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes. Suma de monomios Sólo podemos sumar monomios semejantes. La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes. ax n + bx n = (a + b)x

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio TRABAJO PRÁCTICO Nº 5. MONOMIOS Y POLINOMIOS TEORÍA Y PRÁCTICA Monomios Un monomio es una expresión algebraica formada por: - una parte numérica, llamada coeficiente, y - una parte literal, formada por

Más detalles

TEMA 3. POLINOMIOS Y FRACCIONES ALGEBRAICAS. Ficha 0

TEMA 3. POLINOMIOS Y FRACCIONES ALGEBRAICAS. Ficha 0 Ficha 0 Un monomio es una expresión algebraica formada por el producto de un número, llamado coeficiente, por una o más variables con exponente natural o cero, llamadas parte literal. El grado es la suma

Más detalles

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma. FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas º ESO 1. Expresiones algebraicas En matemáticas es muy común utilizar letras para expresar un resultado general. Por ejemplo, el área de un b h triángulo es base por altura dividido por dos y se expresa

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS Unidad didáctica 5 EXPRESIONES ALGEBRAICAS. POLINOMIOS. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones

Más detalles

Tema 2 Algebra. Expresiones algebraicas Índice

Tema 2 Algebra. Expresiones algebraicas Índice Tema 2 Algebra. Expresiones algebraicas Índice 1. Expresiones algebraicas comunes... 2 2. Valor numérico de una expresión algebraica... 2 3. Tipos de expresiones algebraicas... 2 4. Monomios... 2 4.1.

Más detalles

MONOMIOS Y POLINOMIOS

MONOMIOS Y POLINOMIOS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas y se representan por letras.

Más detalles

Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto

Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto En esta unidad vas a comenzar el estudio del álgebra, el lenguaje de las matemáticas. Vas a aprender

Más detalles

Expresiones algebraicas

Expresiones algebraicas Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas

Más detalles

OPERACIONES CON MONOMIOS Y POLINOMIOS. Suma de monomios

OPERACIONES CON MONOMIOS Y POLINOMIOS. Suma de monomios OPERACIONES CON MONOMIOS Y POLINOMIOS Suma de monomios Sólo podemos sumar monomios semejantes. La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Valor de cada cifra en función de la posición que ocupa. Expresión polinómica de un número.

OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Valor de cada cifra en función de la posición que ocupa. Expresión polinómica de un número. 8966 _ 09-008.qxd 7/6/08 09: Página 9 Números reales INTRODUCCIÓN Los conceptos que se estudian en esta unidad ya han sido tratados en cursos anteriores. A pesar de ello, es importante volverlos a repasar,

Más detalles

TEMA: 5 ÁLGEBRA 3º ESO

TEMA: 5 ÁLGEBRA 3º ESO TEMA: 5 ÁLGEBRA 3º ESO 1. MONOMIO Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. Ejemplo: x

Más detalles

I.E.S. Tierra de Ciudad Rodrigo Departamento de Matemáticas TEMA 6. POLINOMIOS

I.E.S. Tierra de Ciudad Rodrigo Departamento de Matemáticas TEMA 6. POLINOMIOS TEMA 6. POLINOMIOS Una expresión algebraica es un conjunto de letras y números unidos por los signos matemáticos. Las expresiones algebraicas surgen de traducir al lenguaje matemático enunciados en los

Más detalles

Se dice que dos monomios son semejantes cuando tienen la misma parte literal

Se dice que dos monomios son semejantes cuando tienen la misma parte literal Expresiones algebraicas 1 MONOMIOS Conceptos Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural.

Más detalles

TEMA 3. POLINOMIOS Y FRACCIONES ALGEBRAICAS. Ficha 1. P x

TEMA 3. POLINOMIOS Y FRACCIONES ALGEBRAICAS. Ficha 1. P x Ficha. Dados los siguientes polinomios, ordenarlos en orden decreciente, indicar cuál es su grado, decir cuántos términos tiene, señalar cuál es el término independiente, calcular su valor numérico para

Más detalles

Un monomio es el producto indicado de un número por una o varias letras GRADO 4º

Un monomio es el producto indicado de un número por una o varias letras GRADO 4º TEMA. POLINOMIOS OPERACIONES. MONOMIOS Un monomio es el producto indicado de un número por una o varias letras GRADO º COEFICIENTE PARTE LITERAL. VALOR NUMÉRICO DE UN MONOMIO Es el resultado que se obtiene

Más detalles

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las

Más detalles

Coeficiente Parte literal Coeficiente Parte literal 5 x 6 am 2. El grado de un monomio es la suma de los exponentes de las letras que lo forman:

Coeficiente Parte literal Coeficiente Parte literal 5 x 6 am 2. El grado de un monomio es la suma de los exponentes de las letras que lo forman: 1 Monomios Un monomio es una expresión algebraica formada por: - una parte numérica, llamada coeficiente, y - una parte literal, formada por letras y sus exponentes. Coeficiente Parte literal Coeficiente

Más detalles

Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo

Polinomios: Definición: Se llama polinomio en x de grado n a una expresión del tipo Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo P (x) = a 0 x n + a 1 x n 1 +... + a n Donde n N (número natural) ; a 0, a 1, a 2,..., a n son coeficientes reales

Más detalles

UNIDAD 4. POLINOMIOS. (PÁGINA 263)

UNIDAD 4. POLINOMIOS. (PÁGINA 263) UNIDAD 4. POLINOMIOS. (PÁGINA 263) LENGUAJE ALGEBRAICO Una expresión algebraica es aquella que combina: números, operaciones y letras. Ejemplos de expresiones algebraicas: 3 + x x 2 y x + y x 2 y LENGUAJE

Más detalles

Expresiones algebraicas

Expresiones algebraicas Polinomios Expresiones algebraicas Una expresión algebraica es cualquier combinación de números y letras relacionados por operaciones aritméticas: suma, resta, producto, división y potenciación. Ejemplos

Más detalles

TEMA 3. Algebra. Teoría. Matemáticas

TEMA 3. Algebra. Teoría. Matemáticas 1 1 Las expresiones algebraicas Las expresiones algebraicas son operaciones aritméticas, de suma, resta, multiplicación y división, en las que se combinan letras y números. Para entenderlo mejor, vamos

Más detalles

EXPRESIONES ALGEBRAICAS.

EXPRESIONES ALGEBRAICAS. EXPRESIONES ALGEBRAICAS. Se dice expresión algebraica aquella que está formada por números y letras unidos mediante signos. 4x 2 + 1 2 3y Observa que existen dos variables x e y. En la siguiente expresión

Más detalles

Suma, diferencia y producto de polinomios

Suma, diferencia y producto de polinomios I, Polinomios Suma, diferencia y producto de polinomios Un monomio es una expresión algebraica donde los números (coeficientes) y las letras (parte literal) están separados por el signo de la multiplicación.

Más detalles

POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO

POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO Dado que los polinomios se utilizan para describir curvas de diferentes tipos, la gente los utiliza en el mundo real para dibujar curvas. Por ejemplo,

Más detalles

EJERCICIOS DE POLINOMIOS

EJERCICIOS DE POLINOMIOS EJERCICIOS DE POLINOMIOS NOMBRE:... Nº:... º....- Escribe el grado, el número de términos y el nombre (monomio, binomio, trinomio, polinomio) que recibe cada una de las siguientes expresiones algebraicas:

Más detalles

POLINOMIOS En esta unidad aprenderás a:

POLINOMIOS En esta unidad aprenderás a: POLINOMIOS En esta unidad aprenderás a: Reconocer polinomios y calcular su valor numérico Realizar operaciones con polinomios. Manejar la regla de Ruffini y el teorema del resto para encontrar las raíces

Más detalles

Semana 7. Multiplicación y división de polinomios. Semana 7. Multiplicación de polinomios. Multiplicación y división de polinomios

Semana 7. Multiplicación y división de polinomios. Semana 7. Multiplicación de polinomios. Multiplicación y división de polinomios Multiplicación y división de polinomios Seguimos trabajando! A partir de esta semana falta por recorrer la mitad del curso, así que mucho ánimo! En este encuentro continuamos abordando las operaciones

Más detalles

3º ESO PMAR POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS

3º ESO PMAR POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS º ESO PMAR POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. POLINOMIOS 1.- POLINOMIOS Una expresión algebraica está formada por números y letras asociados por medio de las operaciones aritméticas (suma, resta,

Más detalles

Indica el coeficiente, parte literal y grado de estos monomios.

Indica el coeficiente, parte literal y grado de estos monomios. Polinomios EJERCICIOS 001 Indica el coeficiente, parte literal y grado de estos monomios. a) y z 4 b) 5b c c) 15 y d) y 5 a) Coeficiente: Parte literal: y z 4 Grado: + + 4 9 b) Coeficiente: 5 Parte literal:

Más detalles

TEMA 5. FACTORIZACIÓN DE POLINOMIOS.

TEMA 5. FACTORIZACIÓN DE POLINOMIOS. TEMA 5. FACTORIZACIÓN DE POLINOMIOS. 1. SACAR FACTOR COMÚN Cuando todos los términos de un polinomio, P(x), son múltiplos de un mismo monomio, M(x), podemos extraer M(x) como factor común. Por ejemplo:

Más detalles

Polinomios III. I. Fracciones algebraicas con polinomios. 1. Simplificación de fracciones algebraicas. 2. Amplificación de fracciones algebraicas

Polinomios III. I. Fracciones algebraicas con polinomios. 1. Simplificación de fracciones algebraicas. 2. Amplificación de fracciones algebraicas Polinomios III Finalmente veremos en esta última ficha lo correspondiente a fracciones terminando de esta manera con los polinomios. I. Fracciones algebraicas con polinomios Definiremos como una fracción

Más detalles

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA. POLINOMIOS Y FRACCIONES ALGEBRAICAS.. Repaso de polinomios - Epresión algebraica. Valor numérico - Polinomios. Operaciones con polinomios.. Identidades notables - Cuadrado de una suma de una diferencia

Más detalles

POLINOMIOS. OPERACIONES CON POLINOMIOS: 1.- Suma y resta de polinomios: Sumando o restando los monomios que sean semejantes.

POLINOMIOS. OPERACIONES CON POLINOMIOS: 1.- Suma y resta de polinomios: Sumando o restando los monomios que sean semejantes. Recordemos previamente algunos conceptos: POLINOMIOS MONOMIO: expresión algebraica de la forma a x n, siendo a un número real y n un número natural. ( a se llama coeficiente, x n es la parte literal y

Más detalles

3º ESO POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS

3º ESO POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS º ESO POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. POLINOMIOS 1.- POLINOMIOS Una expresión algebraica está formada por números y letras asociados por medio de las operaciones aritméticas (suma, resta, multiplicación,

Más detalles

1. Simplifica la escritura de los siguientes monomios y señala sus dos partes y el grado. d) 8xy 3... = 3 b) 5 x y... = h) 3 c) 7 x y y...

1. Simplifica la escritura de los siguientes monomios y señala sus dos partes y el grado. d) 8xy 3... = 3 b) 5 x y... = h) 3 c) 7 x y y... Tema 5 ALGEBRA º E.S.O. EXPRESIONES ALGEBRAICAS Página nº 1 Los monomios 1. Simplifica la escritura de los siguientes monomios y señala sus dos partes y el grado.... = 8y... =...= y 5 y... =... =...= 7

Más detalles

Representación Gráfica (recta numérica)

Representación Gráfica (recta numérica) NÚMEROS NATURALES ( N ) Representación Gráfica (recta numérica) 0 1 2 3 4 R Mediante un punto negro representamos el 1, el 3 y el 4 NÚMEROS ENTEROS ( Z ) - 2-1 0 1 2 R Mediante un punto negro representamos

Más detalles

CURSO PROPEDEUTICO DEALGEBRA PARA BQFT QUÍMICO FARMACEÚTICO BIOTECNÓLOGO CURSO PROPEDEUTICO AGOSTO 2013 ELABORÓ ALEJANDRO JAIME CARRETO SOSA

CURSO PROPEDEUTICO DEALGEBRA PARA BQFT QUÍMICO FARMACEÚTICO BIOTECNÓLOGO CURSO PROPEDEUTICO AGOSTO 2013 ELABORÓ ALEJANDRO JAIME CARRETO SOSA QUÍMICO FARMACEÚTICO BIOTECNÓLOGO CURSO PROPEDEUTICO AGOSTO 201 ELABORÓ ALEJANDRO JAIME CARRETO SOSA 1 Operaciones entre Quebrados (Fracciones) Sumar quebrados o fracciones: se calcula el común denominador,

Más detalles

POLINOMIOS. El grado de un monomio es la suma de todos los exponentes de las letras o variables.

POLINOMIOS. El grado de un monomio es la suma de todos los exponentes de las letras o variables. RESUMEN Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas

Más detalles

TERMINOS HOMOGENEOS: Son los que tienen el mismo grado absoluto, son homogéneos porque ambos son de quinto grado absoluto.

TERMINOS HOMOGENEOS: Son los que tienen el mismo grado absoluto, son homogéneos porque ambos son de quinto grado absoluto. TERMINOS HOMOGENEOS: Son los que tienen el mismo grado absoluto, son homogéneos porque ambos son de quinto grado absoluto. 4xy y 6xy. Hallando la suma de los exponentes: 4 + 1 = 5 2 + 3 = 5 TERMINOS HETEROGENEOS:

Más detalles

1. EXPRESIONES ALGEBRAICAS.

1. EXPRESIONES ALGEBRAICAS. TEMA 3: POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas

Más detalles

5 EXPRESIONES ALGEBRAICAS

5 EXPRESIONES ALGEBRAICAS 5 EXPRESIONES ALGEBRAICAS EJERCICIOS Si en una librería, el precio de un libro es x euros y el de cada bolígrafo es 7 menos, expresa algebraicamente lo que cuestan: a) Cuatro libros. b) Diez bolígrafos.

Más detalles

POLINOMIOS Y FRACCIONES ALGEBRAICAS

POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS Monomio: Monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. 2x

Más detalles

RESUMEN DE ALGEBRA. CONCEPTO: El pensador principal del algebra es Al-Hwarizmi; es de origen árabe.

RESUMEN DE ALGEBRA. CONCEPTO: El pensador principal del algebra es Al-Hwarizmi; es de origen árabe. RESUMEN DE ALGEBRA CONCEPTO: El pensador principal del algebra es Al-Hwarizmi; es de origen árabe. El álgebra es la rama del conocimiento de la matemática; es decir se desprende de ella. Estudia realidades

Más detalles

Unidad 4. Expresiones algebraicas y polinomios

Unidad 4. Expresiones algebraicas y polinomios Unidad Expresiones algebraicas y polinomios SUMARIO Monomios y polinomios Suma y resta de polinomios Producto de polinomios Sacar factor común de un polinomio Identidades notables División de polinomios

Más detalles

Apuntes de matemáticas 2º ESO Curso 2013-2014. Lenguaje algebraico.

Apuntes de matemáticas 2º ESO Curso 2013-2014. Lenguaje algebraico. Lenguaje algebraico. Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles

TEMA 4: EXPRESIONES ALGEBRAICAS.

TEMA 4: EXPRESIONES ALGEBRAICAS. TEMA 4: EXPRESIONES ALGEBRAICAS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. CURSO 2011-2012 Página 1 de 14 Profesor: Manuel González de León Curso

Más detalles

TEMA 5 EXPRESIONES ALGEBRAICAS

TEMA 5 EXPRESIONES ALGEBRAICAS 5.1 Monomios TEMA 5 EXPRESIONES ALGEBRAICAS Di si las siguientes expresiones matemáticas son monomios o no. En caso de serlo, determina su parte literal, su coeficiente y su grado. 6x 4 6 1 x 4 6 x 4 no

Más detalles

Operaciones con números enteros

Operaciones con números enteros Operaciones con números enteros Suma de números enteros Cuando tienen el mismo signo: Se suman los valores y se deja el signo que tengan, si son positivos signo positivo y si son negativos signo negativo.

Más detalles

53 ESO ÍNDICE: 1. EXPRESIONES ALGEBRAICAS 2. MONOMIOS 3. POLINOMIOS 4. IDENTIDADES 5. DIVISIÓN DE POLINOMIOS 6. FRACCIONES ALGEBRAICAS

53 ESO ÍNDICE: 1. EXPRESIONES ALGEBRAICAS 2. MONOMIOS 3. POLINOMIOS 4. IDENTIDADES 5. DIVISIÓN DE POLINOMIOS 6. FRACCIONES ALGEBRAICAS 53 ESO ÍNDICE: 1. EXPRESIONES ALGEBRAICAS. MONOMIOS 3. POLINOMIOS 4. IDENTIDADES 5. DIVISIÓN DE POLINOMIOS 6. FRACCIONES ALGEBRAICAS El lenguaje algebraico 5. 1 1. EXPRESIONES ALGEBRAICAS LENGUAJE ALGEBRAICO

Más detalles

TEMA 7: FRACCIONES ALGEBRAICAS. Matemáticas 3º ESO

TEMA 7: FRACCIONES ALGEBRAICAS. Matemáticas 3º ESO TEMA 7: FRACCIONES ALGEBRAICAS Matemáticas 3º ESO 1. Fracciones algebraicas valor numérica Una fracción algebraica es el cociente indicado de dos polinomios, el denominador debe ser un polinomio no nulo.

Más detalles

Q(x,t) = -2x 2 t 3 - xt x 5-3x 3 + 4x 2 +2x- 7 22/03/2016. División de polinomios. P(x) = -x 4 + 3x 2-5 R(x) = 5x 4-2x 3 + 3x

Q(x,t) = -2x 2 t 3 - xt x 5-3x 3 + 4x 2 +2x- 7 22/03/2016. División de polinomios. P(x) = -x 4 + 3x 2-5 R(x) = 5x 4-2x 3 + 3x S Escribe un polinomio que cumpla las siguientes condiciones: A)Se llama P(x, y) B)Tiene 5 términos C)Es de grado seis D)No tiene término independiente S Escribe un polinomio que cumpla las siguientes

Más detalles

Título: mar 6-1:39 PM (Página 1 de 20)

Título: mar 6-1:39 PM (Página 1 de 20) TEMA 5. ÁLGEBRA El lenguaje algebraico es un lenguaje matemático que combina números y letras unidos mediante operaciones aritméticas (+, -,, :) para expresar la realidad de forma concisa, inequívoca y

Más detalles

Tema 4. Polinomios Operaciones

Tema 4. Polinomios Operaciones Tema 4. Polinomios Operaciones 1. Expresiones algebraicas. Identidades y ecuaciones.. Monomios.1. Definiciones.. Operaciones con monomios. Polinomios.1. Definiciones.. Operaciones con polinomios Tema.

Más detalles

EXPRESIÓN ALGEBRAICA Monomios, Polinomios

EXPRESIÓN ALGEBRAICA Monomios, Polinomios EXPRESIÓN ALGEBRAICA Monomios, Polinomios CPR. JORGE JUAN Xuvia-Narón Se denomina expresión algebraica a toda combinación de números reales y letras ligadas por las operaciones aritméticas de, adición,

Más detalles

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Y POLINOMIOS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Y POLINOMIOS EXPRESIONES ALGEBRAICAS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman VARIABLES, INCÓGNITAS o INDETERMINADAS

Más detalles

UNIDAD DIDÁCTICA #5 CONTENIDO I. PRODUCTOS NOTABLES III. DIVISIÓN DE POLINOMIOS II. CUBO DE LA SUMA O DIFERENCIA DE DOS CANTIDADES

UNIDAD DIDÁCTICA #5 CONTENIDO I. PRODUCTOS NOTABLES III. DIVISIÓN DE POLINOMIOS II. CUBO DE LA SUMA O DIFERENCIA DE DOS CANTIDADES UNIDAD DIDÁCTICA #5 CONTENIDO I. PRODUCTOS NOTABLES II. CUBO DE LA SUMA O DIFERENCIA DE DOS CANTIDADES III. DIVISIÓN DE POLINOMIOS IV. FACTORIZACIÓN DE EXPRESIONES ALGEBRAICAS I. PRODUCTOS NOTABLES Los

Más detalles

FRACCIONES ALGEBRAICAS. Matemáticas 3º ESO

FRACCIONES ALGEBRAICAS. Matemáticas 3º ESO FRACCIONES ALGEBRAICAS Matemáticas 3º ESO 1. Fracciones algebraicas valor numérica Una fracción algebraica es el cociente indicado de dos polinomios, el denominador debe ser un polinomio no nulo. Ejemplos

Más detalles

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 1º ESO. (2ª parte)

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 1º ESO. (2ª parte) TRABAJO DE MATEMÁTICAS PENDIENTES DE 1º ESO. (2ª parte) NÚMEROS RACIONALES REDUCCIÓN DE FRACCIONES AL MISMO DENOMINADOR Para reducir varias fracciones al mismo denominador se siguen los siguientes pasos:

Más detalles

OPERACIONES CON POLINOMIOS

OPERACIONES CON POLINOMIOS 4. 1 UNIDAD 4 OPERACIONES CON POLINOMIOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas en los que apliques las operaciones de suma, resta, multiplicación y división de polinomios.

Más detalles

TEMA 5. Expresiones Algebraicas

TEMA 5. Expresiones Algebraicas TEMA 5 Expresiones Algebraicas 5.1.- Lenguaje Algebraico El lenguaje numérico sirve para expresar operaciones utilizando solamente números. El lenguaje algebraico sirve para expresar situaciones reales

Más detalles

MANEJO DE ESPACIOS Y CANTIDADES ALGEBRA

MANEJO DE ESPACIOS Y CANTIDADES ALGEBRA MANEJO DE ESPACIOS Y CANTIDADES ALGEBRA ALGEBRA: es el nombre que identifica a una rama de la Matemática que emplea números, letras y signos para poder hacer referencia a múltiples operaciones aritméticas.

Más detalles

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +...

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 x 1 + a 0 Siendo a n, a n -1... a 1, a o números,

Más detalles

Expresiones algebraicas

Expresiones algebraicas Expresiones algebraicas Una expresión algebraica es una combinación de letras y números relacionadas por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las

Más detalles

SERIE INTRODUCTORIA. REPASO DE ALGEBRA.

SERIE INTRODUCTORIA. REPASO DE ALGEBRA. SERIE INTRODUCTORIA. REPASO DE ALGEBRA. 1.- REDUCCION DE TÉRMINOS SEMEJANTES. Recuerde que los términos semejantes son aquellos que tienen las mismas letras con los mismos exponentes. Ejemplos: *7m; 5m

Más detalles

COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS. 1º ESO

COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS. 1º ESO COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS. º ESO RELACIÓN 5: ALGEBRA Lenguaje algebraico, monomios polinomios EXPRESIÓN ALGEBRAICA Es un conjunto de números letras

Más detalles

1. Expresiones polinómicas con una indeterminada

1. Expresiones polinómicas con una indeterminada C/ Francisco García Pavón, 16 Tomelloso 1700 (C. Real) Teléfono Fa: 96 51 9 9 Polinomios 1. Epresiones polinómicas con una indeterminada 1.1. Los monomios Un monomio es una epresión algebraica con una

Más detalles

Ejercicio 1 Completa: Monomio Coeficiente Parte literal Grado

Ejercicio 1 Completa: Monomio Coeficiente Parte literal Grado Soluciones a los ejercicios de Álgebra, primera parte: Ejercicio 1 Completa: Monomio Coeficiente Parte literal Grado 3xz 3 xz 3 1x zy 1 4 abc 1 5 x 5 3 x zy 6 4 abc 6 x 1 Ejercicio Halla el valor numérico

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Una epresión algebraica es aquella en la que se operan números conocidos y números desconocidos representados por las letras a, b, c,, y, z,..., que se denominan

Más detalles

Números Naturales. Cero elemento neutro: = 12 Sucesión fundamental : se obtiene el siguiente número = 9

Números Naturales. Cero elemento neutro: = 12 Sucesión fundamental : se obtiene el siguiente número = 9 Números Naturales Cuando comenzamos a contar los objetos, los años, etc, nos hemos encontrado con los números de forma natural; por eso a este conjunto de números así aprendidos se les denomina números

Más detalles

Álgebra Básica CONALEP 150 TEHUACÁN MANEJO DE ESPACIOS Y CANTIDADES.

Álgebra Básica CONALEP 150 TEHUACÁN MANEJO DE ESPACIOS Y CANTIDADES. Álgebra Básica CONALEP 150 TEHUACÁN MANEJO DE ESPACIOS Y CANTIDADES www.zonaemec.tk Expresión algebraica y sus partes Una expresión algebraica es una combinación de letras y números ligadas por los signos

Más detalles

Coeficientes 43 X = 43 X partes literales - 7 a 3 = - 7 a 3

Coeficientes 43 X = 43 X partes literales - 7 a 3 = - 7 a 3 APU TES Y DEL TEMA 5 OPERACIO ES CO POLI OMIOS 1-T 5--ºESO EXPRESIONES ALGEBRAICAS. OPERACIONES: Son combinaciones de n os y letras unidos con operaciones matemáticas (aritméticas), que generalmente suelen

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD. a) Grado 2 b) Grado 3 c) Grado 2 d)grado 1 e) Grado 1 f) Grado 3 g) Grado 0 h) Grado 2 i) Grado 0

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD. a) Grado 2 b) Grado 3 c) Grado 2 d)grado 1 e) Grado 1 f) Grado 3 g) Grado 0 h) Grado 2 i) Grado 0 Pág. Página 8 PRACTICA Monomios Indica cuál es el grado de los siguientes monomios y di cuáles son semejantes: a) x b) x c) x d) x e) x f) x g) h) x i) a) Grado b) Grado c) Grado d)grado e) Grado f) Grado

Más detalles

Tema 6 Lenguaje Algebraico. Ecuaciones

Tema 6 Lenguaje Algebraico. Ecuaciones Tema 6 Lenguaje Algebraico. Ecuaciones 1. El álgebra El álgebra es una rama de las matemáticas que emplea números y letras con las operaciones aritméticas de sumar, restar, multiplicar, dividir, potencias

Más detalles

EJERCICIOS PROPUESTOS. Escribe las expresiones algebraicas correspondientes. a) Tres números consecutivos. b) Tres números pares consecutivos.

EJERCICIOS PROPUESTOS. Escribe las expresiones algebraicas correspondientes. a) Tres números consecutivos. b) Tres números pares consecutivos. EJERCICIOS PROPUESTOS 4.1 Relaciona cada enunciado con su expresión algebraica. Múltiplo de 3. Número par. El cuadrado de un número más 3. Un número más 5. El triple de un número más 7. 2x x 5 3x x 2 3

Más detalles

Vamos a ver por separado las operaciones básicas con expresiones algebraicas para monomios y polinomios.

Vamos a ver por separado las operaciones básicas con expresiones algebraicas para monomios y polinomios. L as operaciones con expresiones algebraicas son las mismas operaciones que se realizan con los números reales. Es decir, que con las expresiones algebraicas podemos realizar las cuatro operaciones básicas

Más detalles

Fundamentos de la Matemática UNEFA NÚCLEO TÁCHIRA GUÍA DE ESTUDIO CON FINES INSTRUCCIONALES

Fundamentos de la Matemática UNEFA NÚCLEO TÁCHIRA GUÍA DE ESTUDIO CON FINES INSTRUCCIONALES UNIDAD I: EXPRESIONES ALGEBRAICAS. El ÁLGEBRA es la rama de las Matemáticas que estudia la cantidad considerada del modo más generalizado posible, siendo los árabes los primeros en desarrollarla. En Álgebra

Más detalles

5.- Potencia de 1 Un número racional elevado a 1 es igual a sí mismo.

5.- Potencia de 1 Un número racional elevado a 1 es igual a sí mismo. POTENCIAS DE EXPONENTE ENTERO Y BASE RACIONAL 1.- 2.- 3.- PROPIEDADES DE LAS POTENCIAS DE NÚMEROS RACIONALES Pulsa en las siguientes pestañas para analizar cada una de las propiedades de la multiplicación:

Más detalles

Tema 3: Expresiones algebraicas

Tema 3: Expresiones algebraicas .1 Polinomios Tema : Expresiones algebraicas Determina cuáles de las siguientes expresiones son polinomios. Cuando lo sean, dí cuáles son sus monomios(términos), su grado, término principal, término independiente,

Más detalles

BOLETÍN REPASO MATEMÁTICAS 3º ESO - 2ª PARTE

BOLETÍN REPASO MATEMÁTICAS 3º ESO - 2ª PARTE BOLETÍN REPASO MATEMÁTICAS 3º ESO - ª PARTE Una expresión algebraica es toda combinación de números y letras unidos por los signos de las operaciones aritméticas: adición, sustracción, multiplicación,

Más detalles

I.E.S. ANTONIO DOMÍNGUEZ ORTIZ

I.E.S. ANTONIO DOMÍNGUEZ ORTIZ I.E.S. ANTONIO DOMÍNGUEZ ORTIZ 3º DE E.S.O TEMA 5 LENGUAJE ALGEBRAICO 1 ÍNDICE 1 DEFINICIONES 1.1 Expresiones algebraicas 1.2 Incógnitas o variables. 1.3 Términos 1.4 Valor numérico de una expresión algebraica.

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones algebraicas: bac,

Más detalles

Bloque 1. Aritmética y Álgebra

Bloque 1. Aritmética y Álgebra Bloque 1. Aritmética y Álgebra 10. Polinomios 1. Expresiones algebraicas Una expresión algebraica es aquella en la que se utilizan letras, números y signos de operaciones para reflejar de forma generalizada

Más detalles

División de polinomios

División de polinomios División de polinomios: Horner División de polinomios Es aquella operación algebraica que tiene como objetivo encontrar dos únicos polinomios llamados cociente entero q(x) y residuo R(x) a partir de otros

Más detalles

Semana 2: Introducción al Álgebra

Semana 2: Introducción al Álgebra Semana 2: Introducción al Álgebra Taller de Preparación para Prueba PLANEA Ing. Jonathan Quiroga Tinoco Conalep Tehuacán P.T.B. en ADMO, SOMA y EMEC UNIDAD 08 Lenguaje algebraico 1. Lenguaje y expresión

Más detalles

Álgebra vs Aritmética. ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: Polinomios. Expresiones algebraicas. Álgebra elemental.

Álgebra vs Aritmética. ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: Polinomios. Expresiones algebraicas. Álgebra elemental. 16/01/01 ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: olinomios Álgebra vs Aritmética La Aritmética siempre opera sobre números concretos. El Álgebra hace cálculos simbólicos en los que las

Más detalles

Tema 3: Expresiones algebraicas

Tema 3: Expresiones algebraicas Tema 3: Expresiones algebraicas Monomios y polinomios Un monomio es una expresión algebraica en las que las únicas operaciones que aparecen son la multiplicación y la potenciación de exponente natural.

Más detalles

El cuadrado de la suma de dos números es igual al cuadrado del primero más el cuadrado del segundo más el doble producto del primero por el segundo.

El cuadrado de la suma de dos números es igual al cuadrado del primero más el cuadrado del segundo más el doble producto del primero por el segundo. IDENTIDADES NOTABLES Definición Qué es una identidad notable? Es una identidad algebraica que, por su relevancia y por la gran cantidad de veces que se usa en las operaciones matemáticas, recibe el nombre

Más detalles

Factorización de polinomios FACTORIZACIÓN DE POLINOMIOS

Factorización de polinomios FACTORIZACIÓN DE POLINOMIOS FACTORIZACIÓN DE POLINOMIOS 1. Polinomios Un monomio es el producto de un número real por una o más letras que pueden estar elevadas a exponentes que sean números naturales. La suma de los exponentes de

Más detalles

Expresiones Algebraicas Racionales en los Números Reales

Expresiones Algebraicas Racionales en los Números Reales en los Números Reales Carlos A. Rivera-Morales Álgebra Tabla de Contenido Contenido cional nales Algebraica Racional ales : Contenido Discutiremos: qué es una expresión algebraica racional : Contenido

Más detalles

2. EXPRESIONES ALGEBRAICAS

2. EXPRESIONES ALGEBRAICAS 2. EXPRESIONES ALGEBRAICAS Tales como, 2X 2 3X + 4 ax + b Se obtienen a partir de variables como X, Y y Z, constantes como -2, 3, a, b, c, d y cobinadas utilizando la suma, resta, multiplicación, división

Más detalles
Sitemap