SERIE INTRODUCTORIA. REPASO DE ALGEBRA.


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SERIE INTRODUCTORIA. REPASO DE ALGEBRA."

Transcripción

1 SERIE INTRODUCTORIA. REPASO DE ALGEBRA. 1.- REDUCCION DE TÉRMINOS SEMEJANTES. Recuerde que los términos semejantes son aquellos que tienen las mismas letras con los mismos exponentes. Ejemplos: *7m; 5m *8x 2 ; x 2 *6ab 2 ; 2b 2 a Sólo se pueden reducir aquellos términos que son semejantes y se efectúa sumando o restando los coeficientes numéricos y manteniendo la misma parte literal. a) 3x 2 y (x 2 y - 2xy 2 ) + 3x 2 y Sol. 5x 2 y + 2xy 2 b) 3x + 2y (x (x - y) Sol. 3x + 3y c) [-(a 2b) (a + 2b) (-a - 3b)] Sol. a 3b d) 3x + 2y {2x [3x (2y - 3x) -2x] -y} Sol. 5x + y e) 2 Sol. 2 f) {5a b [3b- (c b + 2a) -4a] + c} Sol. -11a + 5b 2c g) 3xy { -(2xy + 4x) + [3y- (-xy + x+ 2xy)]} Sol. 6xy+5x-3y h) {a - 2ab + b [3a + 5ab + 6b (a - b) + 5]} Sol. a + 7ab - 6b MULTIPLICACION DE EXPRESIONES ALGEBRÁICAS Tips. Recuerde la regla de los signos de la multiplicación y las leyes de los exponentes. Para multiplicar un polinomio por un monomio, se multiplica el monomio por cada término del polinomio. Para multiplicar un polinomio por otro polinomio, cada término de un polinomio se multiplica por todos y cada uno de los términos del otro polinomio y se reducen términos semejantes. a) (-4abc) (-3a 2 b 2 ) (2ab 5 c 7 ) Sol. 24a 4 b 8 c 8 b) (2xy 2 ) (4x 2 y) Sol. 8x 3 y 3 c) (-4/5x 2 y 3 z 4 ) (3/8x 2 y 3 ) Sol. 3/10 x 4 y 6 z 4 d) (x 2 yz)(-5x 3 y 2 )(-2y 3 z 2 ) Sol. -5x 5 y 3 z -2x 2 y 4 z 3 e) (m 2 + n 2 - mn) (2m - 3n) Sol. 2m 3 5m 2 n + 5mn 2-3n 3 f) (3x-1) 3 Sol. 27x 3 27x 2 +9x 1 g) (x 2 +2x -2) 2 Sol. x 4 + 4x 3-8x + 4 h) (x + y) -2(-3x-3y) + y(x-3) - (-3y) + x(y-1) Sol. 4x + 5y + 2xy i) {-(a + b) - [2a(3a - 2b)] - (a 2 - a) + b} a(a+b) Sol. -8a 2 + 3ab

2 Juan Inclán Rico PRODUCTOS NOTABLES Dentro de la multiplicación algebraica existen algunos productos que pueden ser desarrollados directamente sin necesidad de efectuar toda la operación. a) Cuadrado de un binomio (a + b) 2 = a 2 + 2ab + b 2 (a - b) 2 = a 2-2ab + b 2 b) Diferencia de Cuadrados (a + b) (a b) = a 2 b 2 Suma de Cubos (a + b)(a 2 ab + b 2 ) = a 3 + b 3 Diferencia de Cubos (a - b )( a 2 + ab + b 2 ) = a 3 - b 3 c) Cubo de un binomio (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 (a - b) 3 = a 3-3a 2 b + 3ab 2 - b 3 d) Producto de binomios con término común (x + a) (x + b) = x 2 + x(a+b) + ab a) (a 5) (a + 11) Sol. No se proporciona. f) (b 2 + 1/4) (b 2 ½) b) (7x - 2/3)(7x + 2/3) g) (2b 2 + 3c 4 ) 2 c) (2x 2 1) 3 h) (5y π) 2 d) i) (a m b n ) 3 e) ( 2 + y) ( 2 y) j) ( 3a 2 + 2b 2 ) ( 3a 2-2b 2 ) 4.- DIVISION DE EXPRESIONES ALGEBRAICAS Tips. Se utilizan las reglas de la división de signos y algunas leyes de los exponentes. Al dividir un polinomio entre un monomio se divide cada término del polinomio entre el monomio, uno a la vez. Para dividir dos polinomios; ambos se colocan en orden decreciente (de mayor a menor exponente) con respecto a una variable; si falta algún término en los polinomios se sustituyen por cero Se aplica un algoritmo similar al utilizado en la división de números naturales. a) Sol. b) Sol.

3 Juan Inclán Rico 3 c) Sol. d) Sol. 8xy + 12 x 3 y 5 w 4-9x 2 w 3 e) Sol. f) (x 2 + 7x + 10) / (x + 2) Sol. x a 2 b 4 g) (8x 3 y 3 ) / (2x y) Sol. 4x 2 + 2xy + y 2 h) (3x 4 +4x 3 32x 2-5x 20) / (3x 3-8x 2 5) Sol. x + 4 i) (-5a 4 b - 7a 3 b 2 4a 2 b 3 7ab 4 5b 5 ) / (a 2 + 2ab +b 2 ) Sol. -5a 2 b + 3ab 2-5b DIVISION SINTETICA Es una forma abreviada de efectuar la división entre dos polinomios, la condición es que el divisor debe de ser un binomio de la forma x - a donde a es un número positivo o negativo. Para efectuar este tipo de divisiones se debe considerar lo siguiente: Ambos polinomios (dividendo y divisor) deben estar ordenados en forma decreciente (de mayor a menor exponente) con respecto a una variable y si falta un término en los polinomios éste se sustituye por cero. Se extraen los coeficientes numéricos de cada término de los polinomios. Para comenzar a dividir se baja el primer número, se multiplica por el divisor y se suma con el siguiente número y asi sucesivamente como se ilustra en el ejemplo: (2x 3 9x 2 +7x + 6) / (x 3) dividendo Sol. 2x 2-3x -2 divisor residuo Cociente Resolver por división sintética. a) (2x 3 +5x 2 +10x -8) / (x+3) sol. 2x 2 x b) (x 3 125) / (x 5) sol. x 2 +5x +25 c) (2y 3 +8y 2-17y +10) / (y + 6) sol. 2y 2-4y +7 - d) (x 5 +5x 4 +3x 3 +2x 2 +8x +8) / (x + 3) sol. x 4 +2x 3-3x 2 +11x e) (3y 2 12) / (y - 2) sol. 3y LEYES DE LOS EXPONENTES Recuerde las leyes de los exponentes Ley Ejemplo x 1 = x 6 1 = 6

4 Juan Inclán Rico 4 x 0 = 1, x -1 = 1/x x 7 0 = = 1/4 x m x n = x m+n x 2 x 3 = x 2+3 = x 5 x m /x n = x m-n x 4 /x 2 = x 4-2 = x 2 (x m ) n = x mn (x 2 ) 3 = x 2 3 = x 6 (xy) n = x n (x/y) n = x n /y n x -n = 1/x n n y n (xy) 3 = x 3 y y 3 (x/y) 2 = x 2 / y 2 x -3 3 = 1/x Realice las operaciones y exprese el resultado en exponentes positivos. a) x 7 / x 3 = f) (2x/3) -2 = b) x -3 x 2 x 4 = g) (x 2 /y) -3 = c) (x -3 ) -2 = h) (-2xy -2 ) 3 = d) (3x 4 ) -2 = e) 3(x 4 ) -2 = k) i) ( ) = j) (-3x -2 y 3 z -4 ) -2 = l) m) ñ) Sol. p) y 3b + 2 ( y 2b + 4 ) 2 Sol. y 7b + 10 n) o) q) 7.- LEYES DE LOS RADICALES significa = a y y se lee como raíz cuadrada positiva de a Definiciòn de Raìz N èsima: Si n es cualquier entero positivo, entonces la raíz n-èsima principal de a se define como y si n es par, se tiene que PROPIEDADES DE LAS RAICES NESIMAS: si n es impar 5. si n es par

5 Definición de los exponentes racionales Para cualquier exponente racional son enteros y, se definee Juan Inclán Rico 5 expresado en su forma más simplificada, donde m y n O equivalentemente, Y si n es par, se requiere que De acuerdo a esta definición, las leyes de los exponentes también son válidas para los exponentes racionales Simplificar los siguientes radicales: 2) 7) 3) 8) 4) 9) 5) Reducir radicales semejantes. 6) 10)

6 Juan Inclán Rico 6

7 Juan Inclán Rico 7 Factorización de trinomios de la forma ax 2 +bx + c = 0 Factorize las expresiones siguientes:

8 Juan Inclán Rico 8 Completar un Trinomio Cuadrado Perfecto. En muchas ocasiones es necesario este procedimiento. El método a seguir depende del término que falte. Practiqué completando los siguientes trinomios. a) 9x b 4 d) + 20b 6 c 3 + 4c 6 b) x 6 6b 2 x 3 + e) 4a 2 + 4a + c) + 2x 3 y 3 + x 6 f) x y RESOLUCIÓN DE ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA. Para resolver una ecuación de primer grado con una incógnita basta con despejar el término independiente. Practique con las siguientes ecuaciones. Recuerde las técnicas repasadas anteriormente.

9 Juan Inclán Rico RESOLUCION DE SISTEMAS DE DOS ECUACIONES CON DOS INCÓGNITAS.

10 Juan Inclán Rico RESOLUCION DE ECUACIONES DE SEGUNDO GRADO Ecuaciones de segundo grado incompletas. *De la forma ax 2 + bx = 0 Una de sus raíces siempre es cero. Para resolverla se factoriza, utilizando a x como factor común x(axx +b) = 0. Se iguala cada factor a cero y se despeja la x. * De la forma ax 2 + c = 0 Sus soluciones son el mismo número pero de signo contrario (uno positivo y uno negativo) Para resolverla se despeja a la x utilizando el doble signo de la raíz. Ecuaciones de segundo grado completas. Ax 2 + bx + c= 0 Estas se pueden resolver de tres maneras: Factorización Completando el trinomio cuadrado perfecto Fórmula general Por factorización. Se factoriza la ecuación, cada factor se iguala a cero y se despeja la x. Practiqué con los siguientes ejercicios.

11 Juan Inclán Rico 11 Por el método de completar cuadrados: Se suma o resta el término faltante para completar un trinomio cuadrado perfecto sin alterar la ecuación original. Por fórmula general. Donde a: Coeficiente del término cuadrático b: Coeficiente del término lineal c: Término independiente La expresión dentro del radical se conoce como el discrimante b 2 4ac y nos da información sobre la naturaleza de las soluciones o raíces de la ecuación. Si b 2 4ac > 0 la ec. de segundo grado tiene dos soluciones reales Si b 2 4ac = 0 la ec. de segundo grado tiene una solución real y una imaginaria Si b 2 4ac < 0 la ec. de segundo grado tiene dos soluciones imaginarias.

Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios.

Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios. Productos notables Sabemos que se llama producto al resultado de una multiplicación. También sabemos que los valores que se multiplican se llaman factores. Se llama productos notables a ciertas expresiones

Más detalles

Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales Ejercicios Orden y valor absoluto...

Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales Ejercicios Orden y valor absoluto... ÍNDICE Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales... 3 Ejercicios... 5 Orden y valor absoluto... 6 Ejercicios... 7 Suma de números reales... 9 Reglas

Más detalles

Contenido: 1. Definición y clasificación. Polinomios.

Contenido: 1. Definición y clasificación. Polinomios. Polinomios. Contenido:. Definición y clasificación.. Operaciones.. Simplificación. 4. Productos notables.. Factorización. 6. Completar cuadrados. 7. Nociones de despeje.. Definición y clasificación Definición.

Más detalles

UNIDAD DIDÁCTICA #5 CONTENIDO I. PRODUCTOS NOTABLES III. DIVISIÓN DE POLINOMIOS II. CUBO DE LA SUMA O DIFERENCIA DE DOS CANTIDADES

UNIDAD DIDÁCTICA #5 CONTENIDO I. PRODUCTOS NOTABLES III. DIVISIÓN DE POLINOMIOS II. CUBO DE LA SUMA O DIFERENCIA DE DOS CANTIDADES UNIDAD DIDÁCTICA #5 CONTENIDO I. PRODUCTOS NOTABLES II. CUBO DE LA SUMA O DIFERENCIA DE DOS CANTIDADES III. DIVISIÓN DE POLINOMIOS IV. FACTORIZACIÓN DE EXPRESIONES ALGEBRAICAS I. PRODUCTOS NOTABLES Los

Más detalles

PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas

PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas que se resuelven siguiendo Reglas y Fórmulas específicas para cada caso y cuyo resultado puede ser escrito por simple inspección, es decir

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS

UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS C u r s o : Matemática Material N 15 UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS GUÍA TEÓRICO PRÁCTICA Nº 1 EVALUACIÓN DE EXPRESIONES ALGEBRAICAS Evaluar una expresión algebraica consiste en sustituir

Más detalles

TERMINOS HOMOGENEOS: Son los que tienen el mismo grado absoluto, son homogéneos porque ambos son de quinto grado absoluto.

TERMINOS HOMOGENEOS: Son los que tienen el mismo grado absoluto, son homogéneos porque ambos son de quinto grado absoluto. TERMINOS HOMOGENEOS: Son los que tienen el mismo grado absoluto, son homogéneos porque ambos son de quinto grado absoluto. 4xy y 6xy. Hallando la suma de los exponentes: 4 + 1 = 5 2 + 3 = 5 TERMINOS HETEROGENEOS:

Más detalles

Contenido. 1. Definiciones. 2. Operaciones Algebraicas 2.1 Suma y resta 2.2 Multiplicación 2.3 Productos Notables 2.4 Factorización 2.

Contenido. 1. Definiciones. 2. Operaciones Algebraicas 2.1 Suma y resta 2.2 Multiplicación 2.3 Productos Notables 2.4 Factorización 2. Contenido 1. Definiciones 1.1 Término algebraico 1.2 Expresión algebraica 1.3 términos semejantes 2. Operaciones Algebraicas 2.1 Suma y resta 2.2 Multiplicación 2.3 Productos Notables 2.4 Factorización

Más detalles

Nombre del estudiante: Grupo: Hora: Salón:

Nombre del estudiante: Grupo: Hora: Salón: Instituto Tecnológico de Saltillo. Cuadernillo de Ejercicios de Álgebra. CURSO DE NIVELACIÓN DE ÁLGEBRA 2013 Nombre del estudiante: Grupo: Hora: Salón: CONTENIDO DEL CUADERNILLO. UNIDAD NÚMEROS REALES.

Más detalles

1. OPERATORIA ALGEBRAICA 1.1 TÉRMINOS SEMEJANTES

1. OPERATORIA ALGEBRAICA 1.1 TÉRMINOS SEMEJANTES MATEMÁTICA MÓDULO 1 Eje temático: Álgebra 1. OPERATORIA ALGEBRAICA 1.1 TÉRMINOS SEMEJANTES Se denominan términos semejantes a aquellos que tienen la misma parte literal. Por ejemplo: -2a 2 b y 5a 2 b son

Más detalles

1 Unidad II. Tópicos del algebra

1 Unidad II. Tópicos del algebra Unidad II. Tópicos del algebra. Expresiones algebraicas Una expresión algebraica es una expresión matemática abstracta como 5xy 4 z 2 + 2 x2 y 0 Cada expresión algebraica está constituida por elementos

Más detalles

Operatoria con Expresiones Algebraicas

Operatoria con Expresiones Algebraicas PreUnAB Clase # 5 Julio 2014 Expresiones Algebraicas Definición Se llama expresión algebraica a un conjunto de valores constantes (2. 3, 7, etc) y valores variables (x, a, y, etc), relacionados entre sí

Más detalles

Profesor: Ing. Víctor Manuel Islas Mejía

Profesor: Ing. Víctor Manuel Islas Mejía Área Académica: Matemáticas Tema: Expresiones Algebráicas Profesor: Ing. Víctor Manuel Islas Mejía Periodo: Enero - Junio 2014 Resumen (Abstract): Una expresión algebraica es una combinación de números

Más detalles

2. EXPRESIONES ALGEBRAICAS

2. EXPRESIONES ALGEBRAICAS 2. EXPRESIONES ALGEBRAICAS Tales como, 2X 2 3X + 4 ax + b Se obtienen a partir de variables como X, Y y Z, constantes como -2, 3, a, b, c, d y cobinadas utilizando la suma, resta, multiplicación, división

Más detalles

A L G E B R A. Ejercicio Signo C. numérico F. literal Grado 5,9a 2 b 3 c menos 5,9 a 2 b 3 c 2+3+1=6

A L G E B R A. Ejercicio Signo C. numérico F. literal Grado 5,9a 2 b 3 c menos 5,9 a 2 b 3 c 2+3+1=6 CONCEPTOS BÁSICOS: A L G E B R A. Término algebraico: Un término algebraico es el producto de una o más variables y una constante literal o numérica. Ejemplos: x y ; ; m En todo término algebraico podemos

Más detalles

TEMA 3. POLINOMIOS Y FRACCIONES ALGEBRAICAS. Ficha 0

TEMA 3. POLINOMIOS Y FRACCIONES ALGEBRAICAS. Ficha 0 Ficha 0 Un monomio es una expresión algebraica formada por el producto de un número, llamado coeficiente, por una o más variables con exponente natural o cero, llamadas parte literal. El grado es la suma

Más detalles

PRODUCTO NOTABLE. Producto Notable

PRODUCTO NOTABLE. Producto Notable PRODUCTO NOTABLE Producto Notable Para elevar un binomio al cuadrado (es decir, multiplicarlo por sí mismo), se suman los cuadrados de cada término con el doble del producto de ellos. Es decir: Un trinomio

Más detalles

Álgebra y Trigonometría

Álgebra y Trigonometría Álgebra y Trigonometría Conceptos fundamentales del Álgebra Universidad de Antioquia Departamento de Matemáticas 1. Números Reales El conjunto de los números reales está constituido por diferentes clases

Más detalles

Titulo: MULTIPLICACION Y DIVISIÓN DE POLINOMIOS Año escolar: 3ER: año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo

Más detalles

UNIDAD DE APRENDIZAJE I

UNIDAD DE APRENDIZAJE I UNIDAD DE APRENDIZAJE I Saberes procedimentales Interpreta y utiliza correctamente el lenguaje simbólico para el manejo de expresiones algebraicas. 2. Identifica operaciones básicas con expresiones algebraicas.

Más detalles

GUIA ALGEBRA PARTE I. Ejercicios básicos de aritmética QUEBRADOS

GUIA ALGEBRA PARTE I. Ejercicios básicos de aritmética QUEBRADOS 1 GUIA ALGEBRA PARTE I Ejercicios básicos de aritmética QUEBRADOS Fracciones mixtas ejemplo 3 4/5 Una fracción mixta es un número entero y una fracción combinados, como 1 3 / 4. Fracciones propias ejemplo

Más detalles

RESUMEN ALGEBRA BÁSICA

RESUMEN ALGEBRA BÁSICA RESUMEN ALGEBRA BÁSICA TERMINO ALGEBRAICO: Es una expresión matemática que consta de un producto (o cociente) de un número con una variable elevado a un exponente (o con varias variables). TÉRMINO ALGEBRAICO

Más detalles

CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA

CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA http:/// CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA DESARROLLA EN FORMA RESUMIDA CADA UNIDAD CON: I. GUIONES DE CONFERENCIAS II. FICHAS DE ESTUDIO III. LABORATORIOS DE EJERCICIOS Trata las unidades siguientes:

Más detalles

OPERACIONES CON MONOMIOS Y POLINOMIOS. Suma de monomios

OPERACIONES CON MONOMIOS Y POLINOMIOS. Suma de monomios OPERACIONES CON MONOMIOS Y POLINOMIOS Suma de monomios Sólo podemos sumar monomios semejantes. La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de

Más detalles

GUIA ALGEBRA PARTE I. Ejercicios básicos de aritmética EJERCICIOS

GUIA ALGEBRA PARTE I. Ejercicios básicos de aritmética EJERCICIOS 1 GUIA ALGEBRA PARTE I Ejercicios básicos de aritmética QUEBRADOS Fracciones mixtas ejemplo 3 4/5 Una fracción mixta es un número entero y una fracción combinados, como 1 3 / 4. Fracciones propias ejemplo

Más detalles

MATEMÁTICAS I MOMENTO 1 DEFINICIONES FUNDAMENTALES (REDUCCIÓN DE TERMINOS SEMEJANTES)

MATEMÁTICAS I MOMENTO 1 DEFINICIONES FUNDAMENTALES (REDUCCIÓN DE TERMINOS SEMEJANTES) 1 MATEMÁTICAS I MOMENTO 1 DEFINICIONES FUNDAMENTALES (REDUCCIÓN DE TERMINOS SEMEJANTES) Introducción: El alumno comprenderá qué estudia el álgebra, así como algunas definiciones importantes como son: expresión

Más detalles

EJERCICIOS DE POLINOMIOS

EJERCICIOS DE POLINOMIOS EJERCICIOS DE POLINOMIOS NOMBRE:... Nº:... º....- Escribe el grado, el número de términos y el nombre (monomio, binomio, trinomio, polinomio) que recibe cada una de las siguientes expresiones algebraicas:

Más detalles

RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO

RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO OBJETIVO RECONOCER EL GRADO, EL TÉRMINO Y LOS COEICIENTES DE UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma de monomios, que son los términos del polinomio.

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio TRABAJO PRÁCTICO Nº 5. MONOMIOS Y POLINOMIOS TEORÍA Y PRÁCTICA Monomios Un monomio es una expresión algebraica formada por: - una parte numérica, llamada coeficiente, y - una parte literal, formada por

Más detalles

24 = = = = = 12. 2

24 = = = = = 12. 2 UNIVERSIDAD MARIANO GÁLVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CENTRO UNIVERSITARIO DE VILLA NUEVA CURSO MATEMÁTICAS APLICADA I 015 Lic. Manuel

Más detalles

M.E.M. RAMSES ANTONIO BARBERI ROSAS

M.E.M. RAMSES ANTONIO BARBERI ROSAS MATEMÁTICAS I Chic@s les mando el cuadernillo el cual esta explicado de una manera muy sencilla y práctica, la solución de ejercicios y problemas los vamos a revisar continuamente en fechas que por whatsapp

Más detalles

Nombre del estudiante: Grupo: Hora: Salón:

Nombre del estudiante: Grupo: Hora: Salón: Instituto Tecnológico de Saltillo. Cuadernillo de Ejercicios de Álgebra. CURSO DE NIVELACIÓN DE ÁLGEBRA 2011 Nombre del estudiante: Grupo: Hora: Salón: CONTENIDO DEL CUADERNILLO. UNIDAD NÚMEROS REALES.

Más detalles

Ejemplo 1: 14x 2 y 2-28x x 4. R: 14x 2 (y 2-2x + 4x 2 ) Ejemplo 2: X 3 + x 5 x 7 = R: x 3 (1 + x 2 - x 4 ) Ejemplo 3:

Ejemplo 1: 14x 2 y 2-28x x 4. R: 14x 2 (y 2-2x + 4x 2 ) Ejemplo 2: X 3 + x 5 x 7 = R: x 3 (1 + x 2 - x 4 ) Ejemplo 3: LOS 10 CASOS DE FACTORIZACION FACTORIZACION Es una técnica que consiste en la descripción de una expresión matemática (que puede ser un número, una suma, una matriz, un polinomio, etc.) en forma de producto.

Más detalles

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma. FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto

Más detalles

TEMA 3. Algebra. Teoría. Matemáticas

TEMA 3. Algebra. Teoría. Matemáticas 1 1 Las expresiones algebraicas Las expresiones algebraicas son operaciones aritméticas, de suma, resta, multiplicación y división, en las que se combinan letras y números. Para entenderlo mejor, vamos

Más detalles

Viernes 14 evaluación ÁLGEBRA II. Propiedad Intelectual Propiedad Cpech Intelectual Cpech

Viernes 14 evaluación ÁLGEBRA II. Propiedad Intelectual Propiedad Cpech Intelectual Cpech Viernes 14 evaluación ÁLGEBRA II Álgebra II Propiedad Intelectual Propiedad Cpech Intelectual Cpech Aprendizajes esperados Reconocer y resolver productos notables. Interpretar geométricamente productos

Más detalles

UNIDAD DOS FACTORIZACIÓN

UNIDAD DOS FACTORIZACIÓN UNIDAD DOS FACTORIZACIÓN Factorizar quiere decir descomponer en factores, los factores son divisores de una expresión que, multiplicados entre sí, dan como resultado la primera expresión. FACTOR COMÚN

Más detalles

GUÍA DE APRENDIZAJE. PROCESO: Prestación del Servicio / Educación Superior

GUÍA DE APRENDIZAJE. PROCESO: Prestación del Servicio / Educación Superior GUÍA UNIDAD No. 04 Programa: Procesos Aduaneros Semestre: Primero 2012 Asignatura: Matemáticas Básicas Nombre Unidad: Factorización Subtemas: Casos de factorización Metodología de Formación: Presencial

Más detalles

Expresiones algebraicas

Expresiones algebraicas Polinomios Expresiones algebraicas Una expresión algebraica es cualquier combinación de números y letras relacionados por operaciones aritméticas: suma, resta, producto, división y potenciación. Ejemplos

Más detalles

ECUACIONES. Sergio Stive Solano Sabié 1. Julio de 2013 MATEMÁTICA. Sergio Solano. Ecuaciones. Clases de ecuaciones

ECUACIONES. Sergio Stive Solano Sabié 1. Julio de 2013 MATEMÁTICA. Sergio Solano. Ecuaciones. Clases de ecuaciones ECUACIONES Sergio Stive Solano 1 Julio de 2013 1 Visita http://sergiosolanosabie.wikispaces.com ECUACIONES Sergio Stive Solano 1 Julio de 2013 1 Visita http://sergiosolanosabie.wikispaces.com Una ecuación

Más detalles

Partes de un monomio

Partes de un monomio Monomios Un monomio es una epresión algebraica en la que la únicas operaciones que afectan a las letras son la multiplicación y la potencia de eponente natural. Son monomios: NO son monomios: 1 yz 1 abc

Más detalles

Las actividades que se mandan son de factorización. Tienes hasta el día viernes a las 2 de la tarde para enviar tus actividades resueltas

Las actividades que se mandan son de factorización. Tienes hasta el día viernes a las 2 de la tarde para enviar tus actividades resueltas TRABAJO 3 TURNO MATUTINO PARA LOS GRUPOS A, B, C Y D DE MATEMÁTICAS DEL TERCER GRADO PROFESOR: IGNACIO GUZMÁN ARTEAGA TRABAJO PARA LOS DÍAS DEL 23 AL 27 DE OCTUBRE. Las actividades que se mandan son de

Más detalles

BOLETÍN REPASO MATEMÁTICAS 3º ESO - 2ª PARTE

BOLETÍN REPASO MATEMÁTICAS 3º ESO - 2ª PARTE BOLETÍN REPASO MATEMÁTICAS 3º ESO - ª PARTE Una expresión algebraica es toda combinación de números y letras unidos por los signos de las operaciones aritméticas: adición, sustracción, multiplicación,

Más detalles

Utilizar los productos notables y algunas técnicas de factorización en las operaciones con polinomios.

Utilizar los productos notables y algunas técnicas de factorización en las operaciones con polinomios. DEPARTAMENTO DE CIENCIAS MATEMÁTICAS Iniciación al Cálculo Productos notables y factorización Presentación Las siluetas de los objetos que nos rodean y los procesos que surgen en diferentes campos de aplicación

Más detalles

FACTORIZACIÓN 1. FACTOR COMUN:

FACTORIZACIÓN 1. FACTOR COMUN: FACTORIZACIÓN Factorizar una expresión algebraica consiste en escribirla como un producto. Cuando realizamos las multiplicaciones: a) 2x (x 2 3x + 2) = 2x 3 6x 2 + 4x b) (x + 7)(x + 5) = x 2 + 12x + 35

Más detalles

Colegio La Salle Envigado FORMANDO EN VALORES PARA LA VIDA GUIA FACTORIZACION

Colegio La Salle Envigado FORMANDO EN VALORES PARA LA VIDA GUIA FACTORIZACION GUIA FACTORIZACION Esta guía tiene como objetivo afianzar los conocimientos teórico-prácticos en los diferentes casos de factorización, para ello se darán en esta guía algunos ejercicios de factorización

Más detalles

FACTORIZACIÓN DE POLINOMIOS GUIA DE NIVELACION 3 PERIODO

FACTORIZACIÓN DE POLINOMIOS GUIA DE NIVELACION 3 PERIODO FACTORIZACIÓN DE POLINOMIOS GUIA DE NIVELACION 3 PERIODO Recuerde que: 1. Factorizar una expresión algebraica consiste en escribirla como un producto. 2. Existen varios casos de factorización. Revisemos

Más detalles

ax 3 -bx 2 = x 2 (ax-b) 2b 5 -b 3 = b 3 (2b 2-1)

ax 3 -bx 2 = x 2 (ax-b) 2b 5 -b 3 = b 3 (2b 2-1) CPU Calle Mercado # 555 Teléfono 3 366191 FACTORIZACIÓN Caso I: Factor Común Cómo Reconocer: Existe un factor común en todos los términos. Los números pueden factorizarse en este caso si existe máximo

Más detalles

TEMA 4: EXPRESIONES ALGEBRAICAS.

TEMA 4: EXPRESIONES ALGEBRAICAS. TEMA 4: EXPRESIONES ALGEBRAICAS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. CURSO 2011-2012 Página 1 de 14 Profesor: Manuel González de León Curso

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Una epresión algebraica es aquella en la que se operan números conocidos y números desconocidos representados por las letras a, b, c,, y, z,..., que se denominan

Más detalles

DESARROLLO D) 4. para a = 1 y b = 2 (a 2 + b 2 )(2a 3b 2 ) es:

DESARROLLO D) 4. para a = 1 y b = 2 (a 2 + b 2 )(2a 3b 2 ) es: ENCUENTRO # 10 TEMA:Operaciones con polinomios CONTENIDOS: 1. Multiplicación de polinomios. 2. Productos notables. DESARROLLO Ejercicio Reto x 2 1. Al racionalizar el denominador de la fracción 3 + se

Más detalles

1. Factor Común. Fundación Uno. Ejercicio Reto. ENCUENTRO # 12 TEMA:Factorizaciones CONTENIDOS: 1. Factor común. 2. Factor común por Agrupamiento

1. Factor Común. Fundación Uno. Ejercicio Reto. ENCUENTRO # 12 TEMA:Factorizaciones CONTENIDOS: 1. Factor común. 2. Factor común por Agrupamiento ENCUENTRO # 12 TEMA:Factorizaciones CONTENIDOS: 1. Factor común 2. Factor común por Agrupamiento 3. Diferencia de cuadrados 4. Suma o Diferencia de Cubos Ejercicio Reto 1. Si a a = 2, el valor de a aaa+1

Más detalles

POLINOMIOS. OPERACIONES CON POLINOMIOS: 1.- Suma y resta de polinomios: Sumando o restando los monomios que sean semejantes.

POLINOMIOS. OPERACIONES CON POLINOMIOS: 1.- Suma y resta de polinomios: Sumando o restando los monomios que sean semejantes. Recordemos previamente algunos conceptos: POLINOMIOS MONOMIO: expresión algebraica de la forma a x n, siendo a un número real y n un número natural. ( a se llama coeficiente, x n es la parte literal y

Más detalles

UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN CURSO PROPEDEÚTICO ÁREA: MATEMÁTICAS

UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN CURSO PROPEDEÚTICO ÁREA: MATEMÁTICAS UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN CURSO PROPEDEÚTICO ÁREA: MATEMÁTICAS TEMA 1. ÁLGEBRA Parte de las Matemáticas que se dedica en sus aspectos más elementales. A

Más detalles

y 2 z Es la expresión común que tienen todos los términos de una expresión algebraica.

y 2 z Es la expresión común que tienen todos los términos de una expresión algebraica. ENCUENTRO # 12 TEMA:Factorizaciones CONTENIDOS: 1. Factor común 2. Factor común por agrupamiento 3. Diferencia de cuadrados 4. Suma o Diferencia de Cubos Ejercicio Reto 1. Si a a = 2, el valor de a aaa+1

Más detalles

Polinomios II. I. Regla de Ruffini

Polinomios II. I. Regla de Ruffini Polinomios II En las matemáticas se define el polinomio como una expresión que está formada por un número finito de variables (no conocidas) y constantes (coeficientes) siendo muy utilizados en las matemáticas

Más detalles

Descomposición factorial. Suma o diferencia de cubos perfectos. P r o c e d i m i e n t o

Descomposición factorial. Suma o diferencia de cubos perfectos. P r o c e d i m i e n t o 103 Descomposición factorial Suma o diferencia de cubos perfectos P r o c e d i m i e n t o 1. Se abren dos paréntesis 2. En el primer paréntesis se escribe la suma o la diferencia, según el caso, de las

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS

OBJETIVOS CONTENIDOS PROCEDIMIENTOS Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender el concepto de polinomio y otros asociados

Más detalles

MATERIALES: Cuaderno de 100h cuadriculado, block de hojas milimetradas, calculadora, lápiz, borrador, lapicero de color verde

MATERIALES: Cuaderno de 100h cuadriculado, block de hojas milimetradas, calculadora, lápiz, borrador, lapicero de color verde MATERIALES: Cuaderno de 00h cuadriculado, block de hojas milimetradas, calculadora, lápiz, borrador, lapicero de color verde FACTORIZACION - Casos de Factorización - Factor común - Factor común por agrupación

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS Unidad didáctica 5 EXPRESIONES ALGEBRAICAS. POLINOMIOS. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones

Más detalles

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA. POLINOMIOS Y FRACCIONES ALGEBRAICAS.. Repaso de polinomios - Epresión algebraica. Valor numérico - Polinomios. Operaciones con polinomios.. Identidades notables - Cuadrado de una suma de una diferencia

Más detalles

Álgebra Básica CONALEP 150 TEHUACÁN MANEJO DE ESPACIOS Y CANTIDADES.

Álgebra Básica CONALEP 150 TEHUACÁN MANEJO DE ESPACIOS Y CANTIDADES. Álgebra Básica CONALEP 150 TEHUACÁN MANEJO DE ESPACIOS Y CANTIDADES www.zonaemec.tk Expresión algebraica y sus partes Una expresión algebraica es una combinación de letras y números ligadas por los signos

Más detalles

ALGEBRA. Término algebraico Coeficiente numérico Parte literal

ALGEBRA. Término algebraico Coeficiente numérico Parte literal ALGEBRA La importancia del álgebra radica en que constituye el cimiento de casi todas las ramas de la matemática; es una poderosa herramienta para desarrollar el pensamiento analítico. Con la ayuda del

Más detalles

Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Polinomios

Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Polinomios Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Polinomios Prof. Glorymill Santiago Labrador Adaptado por: Prof. Anneliesse Sánchez, Prof. Caroline Rodríguez Polinomios Definición: Un

Más detalles

PRODUCTOS NOTABLES 9º

PRODUCTOS NOTABLES 9º PRODUCTOS NOTABLES INDICADOR DE LOGRO 1. Acepta los productos notables como fórmulas para obtener el producto de expresiones algebraicas. 2. Aplica las reglas al resolver los diferentes tipos de productos

Más detalles

IMPORTANTE SOLO IMPRIMA LO QUE CORRESPONDA A EJERCICIOS, LAS EXPLICACIONES SON OPCIONALES

IMPORTANTE SOLO IMPRIMA LO QUE CORRESPONDA A EJERCICIOS, LAS EXPLICACIONES SON OPCIONALES TRABAJO DE REFUERZO OPERACIONES CON EXPRESIONES ALGEBRAICAS Y GEOMETRIA PERIODO Chía, Mayo de 07 Señores Estudiantes Grados 0,07,0, a continuación encontrarán una serie de ejercicios que han sido bajados

Más detalles

CURSO PROPEDÉUTICO 2017

CURSO PROPEDÉUTICO 2017 CURSO PROPEDÉUTICO 2017 1 FUNDAMENTOS DE MATEMÁTICAS OBJETIVO Formar estudiantes altamente capacitados, que cuenten con competencias y conocimientos para construir y utilizar técnicas que contribuyan a

Más detalles

1º BACH MATEMÁTICAS I

1º BACH MATEMÁTICAS I 1º BACH MATEMÁTICAS I Ecuaciones, inecuaciones y sistemas Trigonometría Vectores Nº complejos Geometría Funciones. Límites. Continuidad. Derivadas Repaso en casa Potencias Radicales. Racionalización. (pag.

Más detalles

MONOMIOS Y POLINOMIOS

MONOMIOS Y POLINOMIOS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas y se representan por letras.

Más detalles

Uniboyacá GUÍA DE APRENDIZAJE NO 7. Psicología e Ingeniería Ambiental

Uniboyacá GUÍA DE APRENDIZAJE NO 7. Psicología e Ingeniería Ambiental Uniboyacá GUÍA DE APRENDIZAJE NO 7 1. IDENTIFICACIÓN Programa académico Psicología e Ingeniería Ambiental Actividad académica o curso Matemáticas básicas Semestre Segundo de 2012 Actividad de aprendizaje

Más detalles

POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO

POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO Dado que los polinomios se utilizan para describir curvas de diferentes tipos, la gente los utiliza en el mundo real para dibujar curvas. Por ejemplo,

Más detalles

Guía para la Evaluación Diagnóstica en Matemáticas. Programa

Guía para la Evaluación Diagnóstica en Matemáticas. Programa UNIVERSIDAD DE GUADALAJARA Centro Universitario de Ciencias Económico Administrativas División de Economía y Sociedad Departamento de Métodos Cuantitativos Academia de Matemáticas Generales Guía para la

Más detalles

POLINOMIOS. El grado de un monomio es la suma de todos los exponentes de las letras o variables.

POLINOMIOS. El grado de un monomio es la suma de todos los exponentes de las letras o variables. RESUMEN Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas

Más detalles

Matemáticas Universitarias

Matemáticas Universitarias Matemáticas Universitarias 1 Sesión No. 2 Nombre: Expresiones algebraicas y sus operaciones Objetivo de la asignatura: En esta sesión el estudiante aplicará las operaciones básicas como suma, resta, multiplicación

Más detalles

Expresiones algebraicas

Expresiones algebraicas Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas

Más detalles

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las

Más detalles

Centro Regional Universitario De Bocas del Toro

Centro Regional Universitario De Bocas del Toro Centro Regional Universitario De Bocas del Toro Nociones Fundamentales del Álgebra El Álgebra es una rama de la matemática que se ocupa de las cantidades más generales y para representarla utiliza letras,

Más detalles

PRODUCTOS NOTABLES. Diferencia de Cuadrados: El Cuadrado del Primer Término menos El Cuadrado del Segundo Término.

PRODUCTOS NOTABLES. Diferencia de Cuadrados: El Cuadrado del Primer Término menos El Cuadrado del Segundo Término. PRODUCTOS NOTABLES Son aquellos productos que se rigen por reglas fijas y cuyo resultado puede hallarse por simple inspección. Su denominados también "Identidades Algebraicas". Son aquellos productos cuyo

Más detalles

Ejercicio 1 Completa: Monomio Coeficiente Parte literal Grado

Ejercicio 1 Completa: Monomio Coeficiente Parte literal Grado Soluciones a los ejercicios de Álgebra, primera parte: Ejercicio 1 Completa: Monomio Coeficiente Parte literal Grado 3xz 3 xz 3 1x zy 1 4 abc 1 5 x 5 3 x zy 6 4 abc 6 x 1 Ejercicio Halla el valor numérico

Más detalles

TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19

TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19 TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19 Introducción 19 Lenguaje común y lenguaje algebraico 22 Actividad 1 (Lenguaje común y lenguaje algebraico) 23 Actividad 2 (Lenguaje común y

Más detalles

UNIDAD 4. POLINOMIOS. (PÁGINA 263)

UNIDAD 4. POLINOMIOS. (PÁGINA 263) UNIDAD 4. POLINOMIOS. (PÁGINA 263) LENGUAJE ALGEBRAICO Una expresión algebraica es aquella que combina: números, operaciones y letras. Ejemplos de expresiones algebraicas: 3 + x x 2 y x + y x 2 y LENGUAJE

Más detalles

53 ESO ÍNDICE: 1. EXPRESIONES ALGEBRAICAS 2. MONOMIOS 3. POLINOMIOS 4. IDENTIDADES 5. DIVISIÓN DE POLINOMIOS 6. FRACCIONES ALGEBRAICAS

53 ESO ÍNDICE: 1. EXPRESIONES ALGEBRAICAS 2. MONOMIOS 3. POLINOMIOS 4. IDENTIDADES 5. DIVISIÓN DE POLINOMIOS 6. FRACCIONES ALGEBRAICAS 53 ESO ÍNDICE: 1. EXPRESIONES ALGEBRAICAS. MONOMIOS 3. POLINOMIOS 4. IDENTIDADES 5. DIVISIÓN DE POLINOMIOS 6. FRACCIONES ALGEBRAICAS El lenguaje algebraico 5. 1 1. EXPRESIONES ALGEBRAICAS LENGUAJE ALGEBRAICO

Más detalles

CUADERNO DE TRABAJO 1

CUADERNO DE TRABAJO 1 1 COLEGIO UNIVERSITARIO DE CARTAGO ELECTRÓNICA MATEMÁTICA ELEMENTAL EL-103 CUADERNO DE TRABAJO 1 Elaborado por: Msc. Adriana Rivera Meneses II Cuatrimestre 2014 2 ESTIMADO ESTUDIANTE: El objetivo del siguiente

Más detalles

= =

= = FACTORIZACIÓN 31 Factorización La factorización corresponde al proceso lógico mediante el cual se expresa un objeto o número a como el producto de otros objetos o números más simples llamados factores).

Más detalles

Se dice que dos monomios son semejantes cuando tienen la misma parte literal

Se dice que dos monomios son semejantes cuando tienen la misma parte literal Expresiones algebraicas 1 MONOMIOS Conceptos Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural.

Más detalles

ELEMENTO DE COMPETENCIA 2: ÁLGEBRA Semanas: 4

ELEMENTO DE COMPETENCIA 2: ÁLGEBRA Semanas: 4 ELEMENTO DE COMPETENCIA 2: ÁLGEBRA Semanas: 4 CONTENIDO Competencia específica de la unidad... 4 2.1 Expresión algebraica... 4 2.1.1 Reducción de términos semejantes... 5 Ejercicios 2.1... 6 2.1.2 Operaciones

Más detalles

OPERACIONES CON POLINOMIOS

OPERACIONES CON POLINOMIOS 4. 1 UNIDAD 4 OPERACIONES CON POLINOMIOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas en los que apliques las operaciones de suma, resta, multiplicación y división de polinomios.

Más detalles

Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO. Nombre: Curso: Fecha: F Cómo es el polinomio, completo o incompleto?

Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO. Nombre: Curso: Fecha: F Cómo es el polinomio, completo o incompleto? REPASO Y APOYO OBJETIVO 1 3 RECONOCER EL GRADO Y LOS ELEMENTOS QUE ORMAN UN POLINOMIO Nombre: Curso: echa: Un polinomio es una expresión algebraica formada por la suma algebraica de monomios, que son los

Más detalles

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Y POLINOMIOS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Y POLINOMIOS EXPRESIONES ALGEBRAICAS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman VARIABLES, INCÓGNITAS o INDETERMINADAS

Más detalles

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 1º ESO. (2ª parte)

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 1º ESO. (2ª parte) TRABAJO DE MATEMÁTICAS PENDIENTES DE 1º ESO. (2ª parte) NÚMEROS RACIONALES REDUCCIÓN DE FRACCIONES AL MISMO DENOMINADOR Para reducir varias fracciones al mismo denominador se siguen los siguientes pasos:

Más detalles

Matemáticas II CC II PARCIAL INBAC UNIDAD DIDÁTICA #3

Matemáticas II CC II PARCIAL INBAC UNIDAD DIDÁTICA #3 UNIDAD DIDÁTICA #3 INDICE PÁGINA Las Letras Como Números Generalizadores -----------------------------------------------------2 Clasificación de las expresiones algebraicas------------------------------------------------------4

Más detalles

Resumen anual de Matemática 1ª Convocatoria: jueves 24 de noviembre, 2016 Octavo nivel 2ª Convocatoria: miércoles 1 de febrero, 2017 broyi.jimdo.

Resumen anual de Matemática 1ª Convocatoria: jueves 24 de noviembre, 2016 Octavo nivel 2ª Convocatoria: miércoles 1 de febrero, 2017 broyi.jimdo. Resumen anual de Matemática 1ª Convocatoria: jueves 4 de noviembre, 016 Octavo nivel ª Convocatoria: miércoles 1 de febrero, 017 broyi.jimdo.com Contenidos Los números... Objetivo 1... El conjunto de los

Más detalles

La asignatura de Matemática estimula el desarrollo de diversas habilidades:

La asignatura de Matemática estimula el desarrollo de diversas habilidades: La asignatura de Matemática estimula el desarrollo de diversas habilidades: Intelectuales, como: El razonamiento lógico y flexible, la imaginación, la inteligencia espacial, el cálculo mental, la creatividad,

Más detalles

Factorizaciòn. Factorizar un polinomio. Caso I - Factor común. Factor común monomio. Factor común polinomio

Factorizaciòn. Factorizar un polinomio. Caso I - Factor común. Factor común monomio. Factor común polinomio Factorizaciòn La factorización es expresar un objeto o número (por ejemplo, un número compuesto, una matriz o un polinomio) como producto de otros objetos más pequeños (factores), (en el caso de números

Más detalles

Es una división de polinomios por el método de coeficientes separados.

Es una división de polinomios por el método de coeficientes separados. Baldor Ejercicio 58 - #13 Dividir por coeficientes separados: entre Es una división de polinomios por el método de coeficientes separados. Procedimiento general para la división de polinomios por el método

Más detalles

Ejercicios... Julio Yarasca

Ejercicios... Julio Yarasca Ejercicios... Julio Yarasca 4 de junio de 2015 Capítulo 1 Productos Notables 1.1. Teoría Tenemos los siguientes productos notables 1. Binomio al cuadrado 2. Identidades de Lagrange 3. Diferencia de Cuadrados

Más detalles

I.E.S. Tierra de Ciudad Rodrigo Departamento de Matemáticas TEMA 6. POLINOMIOS

I.E.S. Tierra de Ciudad Rodrigo Departamento de Matemáticas TEMA 6. POLINOMIOS TEMA 6. POLINOMIOS Una expresión algebraica es un conjunto de letras y números unidos por los signos matemáticos. Las expresiones algebraicas surgen de traducir al lenguaje matemático enunciados en los

Más detalles

LICEO Nº1 JAVIERA CARRERA 2012 MATEMATICA Benjamín Rojas F. FACTORIZACIÓN

LICEO Nº1 JAVIERA CARRERA 2012 MATEMATICA Benjamín Rojas F. FACTORIZACIÓN LICEO Nº1 JAVIERA CARRERA 2012 MATEMATICA Benjamín Rojas F. FACTORIZACIÓN Factorizar es transformar un número o una expresión algebraica en un producto. Ejemplos: Transformar en un producto el número 6

Más detalles

PRODUCTOS NOTABLES 9º

PRODUCTOS NOTABLES 9º PRODUCTOS NOTABLES INDICADORES DE LOGRO 1. Acepta los productos notables como fórmulas para obtener el producto de expresiones algebraicas. 2. Aplica las reglas al resolver los diferentes tipos de productos

Más detalles

DESARROLLO. a r a s = ar s

DESARROLLO. a r a s = ar s ENCUENTRO # 11 TEMA:Operaciones con polinomios CONTENIDOS: 1. División de polinomios. DESARROLLO Ejercicio Reto 1. El resultado de n 4 n 1 es: A) 1 B) 1 n 1 B)4 n 1 D) 4 E) 1 4 4 4 4 4 n 1 4 2. Si para

Más detalles
Sitemap