UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN CURSO PROPEDEÚTICO ÁREA: MATEMÁTICAS


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN CURSO PROPEDEÚTICO ÁREA: MATEMÁTICAS"

Transcripción

1 UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN CURSO PROPEDEÚTICO ÁREA: MATEMÁTICAS TEMA 1. ÁLGEBRA Parte de las Matemáticas que se dedica en sus aspectos más elementales. A resolver ecuaciones y sistemas de ecuaciones. Los algoritmos de resolución de ecuaciones y de sistemas de ecuaciones han ocupado a muchos matemáticos a lo largo de la historia. Así, se conoce la existencia de problemas resueltos por procedimientos algebraicos, que datan del año 1900 a. C. El lenguaje simbólico utilizado en estos procesos se atribuye a los árabes. Operaciones con Polinomios Qué es una ecuación? Una ecuación dice que dos cosas son iguales. Tendrá un signo de igualdad "=", por ejemplo: x + 2 = 6 Lo que esta ecuación dice: lo que está a la izquierda (x + 2) es igual que lo que está en la derecha (6) Así que una ecuación es como una afirmación "esto es igual a aquello"

2 Partes de una ecuación Para que la gente pueda hablar de ecuaciones, hay nombres para las diferentes partes. Aquí tienes una ecuación que dice 4x-7 es igual a 5, y todas sus partes: Una variable es un símbolo para un número que todavía no conocemos. Normalmente es una letra como x o y. Un número solo se llama una constante. Un coeficiente es un número que está multiplicando a una variable (4x significa 4 por x, así que 4 es un coeficiente) Un operador es un símbolo (como +,, etc.) que representa una operación (es decir, algo que quieres hacer con los valores). Un término es o bien un número o variable solo, o números y variables multiplicados juntos. Una expresión es un grupo de términos (los términos están separados por signos + o -) Exponente El exponente dice cuántas veces usar el valor en una multiplicación. Ejemplos: 8 2 = 8 8 = 64 y 3 = y y y y 2 z = y y z

3 Polinomio Un ejemplo de un polinomio: 3x 2 + x 2 Un polinomio puede tener constantes, variables y los exponentes 0,1,2,3,... Y se puede combinar haciendo sumas, restas y multiplicaciones... Monomio, binomio, trinomio Hay nombres especiales para polinomios con 1, 2 o 3 términos: Suma y Resta de Polinomios Sumar polinomios Dos pasos: Pon juntos los términos similares Suma los términos similares Ejemplo: suma 2x 2 + 6x + 5 y 3x 2-2x - 1 Junta los términos similares: 2x 2 + 3x 2 + 6x - 2x Suma los términos similares: (2+3)x 2 + (6-2)x + (3-1) = 5x 2 + 4x + 4

4 Sumar varios polinomios Puedes sumar varios polinomios juntos así. Ejemplo: suma (2x 2 + 6y + 3xy), (3x 2-5xy - x) y (6xy + 5) Ponlos alineados en columnas y suma: 2x 2 + 6y + 3xy 3x 2-5xy - x 6xy + 5 5x 2 + 6y + 4xy + x + 5 Usar columnas te ayuda a poner juntos los términos similares en las sumas complicadas. Restar polinomios Para restar polinomios, primero invierte el signo de cada término que vas a restar (en otras palabras cambia "+" por "-", y "-" por "+"), después suma normalmente. Multiplicar Polinomios Para multiplicar dos polinomios: multiplica cada término de un polinomio por cada término del otro polinomio suma las respuestas, y simplifica si hace falta Veamos primero los casos más simples 1 término 1 término (monomio por monomio) Para multiplicar un término por otro, primero multiplica las constantes, después multiplica cada variable y combina el resultado

5 División entre fracciones En este tipo de división se cumplen las mismas reglas que con la división de monomios y las reglas de división de fracciones de la aritmética. Se aplica ley de signos Se multiplica el dividendo del primer término por el divisor del segundo para crear el dividendo de la división, y el divisor del primero por el dividendo del segundo para crear el divisor de la división (esto se llama división cruzada) Se divide el coeficiente del dividendo entre el coeficiente del divisor Ejemplos: Se aplica ley de los exponentes tomando las letras que no se encuentren como elevadas a cero (nº = 1), y se escriben en orden alfabético.

6 División de polinomios entre monomios. Para dividir un polinomio entre un monomio se distribuye el polinomio sobre el monomio, esto se realiza convirtiéndolos en fracciones. Pasos: Colocamos el monomio como denominador de él polinomio. Separamos el polinomio en diferentes términos separados por el signo y cada uno dividido por el monomio. Se realizan las respectivas divisiones entre monomios tal como se realizo en el capitulo anterior. Se realizan las sumas y restas necesarias. Ejemplos: División entre polinomios. En este tipo de división se procede de manera similar a la división aritmética los pasos a seguir son los siguientes. Se ordenan los polinomios con respecto a una misma letra y en el mismo sentido (en orden ascendente u orden descendente), si el polinomio no es completo se dejan los espacios de los términos que faltan. El primer termino del cociente se obtiene dividiendo el primer termino del dividendo entre el primer miembro del divisor. Se multiplica el primer término del cociente por todos los términos del divisor, se coloca este producto debajo de él dividendo y se resta del dividendo. El segundo término del cociente se obtiene dividiendo el primer termino del dividendo parcial o resto (resultado del paso anterior), entre el primer termino del divisor.

7 Se multiplica el segundo término del cociente por todos los términos del divisor, se coloca este producto debajo de él dividendo parcial y se resta del dividendo parcial. Se continua de esta manera hasta que el resto sea cero o un dividendo parcial cuyo primer término no pueda ser dividido por el primer termino del divisor. Cuando esto ocurre el resto será el residuo de la división. La intención con este método de división es que con cada resta se debe eliminar el termino que se encuentra más a la izquierda en el dividendo o dividendo parcial. Ejemplos:

8 Productos notables Se llama productos notables a ciertas expresiones algebraicas que se encuentran frecuentemente y que es preciso saber factorizarlas a simple vista; es decir, sin necesidad de hacerlo paso por paso. A modo de resumen, se entrega el siguiente cuadro con Productos notables: (a + b) 2 = a 2 + 2ab + b 2 Binomio al cuadrado (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 Binomio al cubo (a+b) (a-b) = a 2 b 2 Binomios Conjugados (a-5) (a-2) = a 2-7a + 10 Binomios con Término Común Reglas de solución del Binomio al Cuadrado Un binomio al cuadrado (suma) es igual es igual al cuadrado del primer término, más el doble producto del primero por el segundo más el cuadrado segundo. Un binomio al cuadrado (resta) es igual es igual al cuadrado del primer término, menos el doble producto del primero por el segundo, más el cuadrado segundo. Ejemplos: (x + 3) 2 = x x = x x + 9 (2x 3) 2 = (2x) 2 2 2x = 4x 2 12 x + 9 Reglas de solución del Binomio al Cubo Un binomio al cubo (suma) es igual al cubo del primero, más el triple del cuadrado del primero por el segundo, más el triple del primero por el cuadrado del segundo, más el cubo del segundo.

9 Un binomio al cubo (resta) es igual al cubo del primero, menos el triple del cuadrado del primero por el segundo, más el triple del primero por el cuadrado del segundo, menos el cubo del segundo. Ejemplos: (x + 3) 3 = x x x = x 3 + 9x x + 27 (2x - 3) 3 = (2x) 3-3 (2x) x = 8x 3-36x x 27 Reglas de solución Binomios Conjugados El primer término se eleva al cuadrado menos el segundo término elevado al cuadrado. Ejemplos: (3x 3 y 2 5x 4 y 6 ) (3x 3 y 2 + 5x 4 y 6 ) = 9x 6 y 4 25x 8 y 12 (5m 2 n 5 3x 3 ) (5m 2 n 5 + 3x 3 ) = 25m 4 y 10 9x 6 Reglas de solución Binomios Con Término Común Se eleva el primer término al cuadrado, Más la suma algebraica de los términos no comunes multiplicado por el término común, Más la multiplicación de los términos no comunes. Ejemplos: (3x 2 5) (3x 2-2)= 9x 4-21x (x 2 + 3) (x 2 +8)= x 4-11x 2 +24

10 Factorización Así como los números naturales pueden ser expresados como producto de dos o más números, los polinomios pueden ser expresados como el producto de dos o más factores algebraicos. Cuando un polinomio no se puede factorizar se denomina irreducible. En los casos en que la expresión es irreducible, solo puede expresarse como el producto del número 1 por la expresión original. Al proceso de expresar un polinomio como un producto de factores se le denomina factorización. El proceso de factorización puede considerarse como inverso al proceso de multiplicar. Factor común Cuando se tiene una expresión de dos o más términos algebraicos y si se presenta algún término común, entonces se puede sacar este término como factor común. Ejemplo: a 4 + a 2 a 3 +a = a (a 3 + a a 2 +1) 18x 2 y 3 12xy 5 +24x 4 y 2 = 6xy 2 (3xy 2y 3 + 4x 3 ) Factor por agrupación de términos En una expresión de dos, cuatro, seis o un número par de términos es posible asociar por medio de paréntesis de dos en dos o de tres en tres o de cuatro en cuatro de acuerdo al número de términos de la expresión original. Se debe dar que cada uno de estos paréntesis que contiene dos, o tres o más términos se le pueda sacar un factor común y se debe dar que lo que queda en los paréntesis sea lo mismo para todos los paréntesis o el factor común de todos los paréntesis sea el mismo y este será el factor común. Ejemplo: 2ab 2 + 2a 4 3b 3-3a 3 b = 2a (b 2 + a 3 ) 3b (b 2 + a 3 ) = (2a 3b) (b 2 + a 3 ) 2xz 2xy + 2x z + y 1 = 2x ( z y + 1) -1 ( z y + 1) = (2x -1) ( z y + 1)

11 Trinomio cuadrado perfecto Una expresión se denomina trinomio cuadrado perfecto cuando consta de tres términos donde el primero y tercer términos son cuadrados perfectos (tienen raíz cuadrada exacta) y positivos, y el segundo término es el doble producto de sus raíces cuadradas. Se extrae la raíz cuadrada del primer y tercer término y se separan estas raíces por el signo del segundo término. El binomio así formado se eleva al cuadrado. Ejemplo: Diferencia de cuadrados perfectos 4a a 2 b + 9a 2 b 2 = (2a + 3ab) 2 4m 6-12m 4 n 4 + 9m 2 n 8 = (2m 3 3mn 4 ) 2 Dos cuadrados que se están restando es una diferencia de cuadrados. Para factorizar esta expresión se extrae la raíz cuadrada de los dos términos y se multiplica la resta de los dos términos por la suma de los dos. Ejemplo: 36m 2 n 4 49x 6 y 8 = (6mn 2 7x 3 y 4 ) (6mn 2 +7x 3 y 4 ) 100a 6 x 4 y 10 = (10a 3 x 2 y 5 ) (10a 3 + x 2 y 5 ) Trinomio de la forma: Esta clase de trinomio se caracteriza por lo siguiente: El primer término tiene como coeficiente 1 y la variable esta al cuadrado. El segundo término tiene coeficiente entero de cualquier valor y signo y la misma variable. El tercer término es independiente (no contiene la variable).

12 Para factorizar este trinomio se deben abrir dos factores que sean binomios, y donde el primer término de cada binomio es la variable y el segundo término en cada uno de los factores (paréntesis), son dos números, uno en cada paréntesis de tal forma que la suma de los dos del coeficiente del segundo término del trinomio y la multiplicación de los dos del tercer término del trinomio, el signo del segundo término de cada factor depende de lo siguiente: Si el signo del tercer término es negativo, entonces uno será positivo y el otro negativo, el mayor de los dos números llevara el signo del segundo término del trinomio y el otro número llevara el signo contrario. Si el signo del tercer término es positivo, entonces los dos signos serán iguales (positivos o negativos), serán el signo del segundo término del trinomio. Ejemplo: a a +72 = (a + 9) (a + 8) (+9)(+8) = = +17 m 4 2m = (m 2 14) (m 2 +12) (-14)(+12) = = -2 Trinomio de la forma Se factoriza en dos paréntesis multiplicando con dos términos cada uno.los primeros términos de cada paréntesis multiplicados deben dar el primer termino (ax 2 ) los dos últimos términos de cada paréntesis multiplicados deben dar el último termino (c) y el producto de los medios, sumados con el producto de los extremos deben dar el de en medio (bx).

13 Ejemplo: 6x x +35 = (3x + 5) (2x + 7) (+3x)(+2x) = +6x 2 (5)(7)= +35 (5)(2x) + (3x)(7) = 31x 24x 2-72x +48 = (4x - 8) (6x - 6) (+4x)(+6x) = +24x 2 (-8)(-6)= +48 (-8)(6x) + (4x)(-6) = -72x Ecuaciones de primer grado Una ecuación es una igualdad donde por lo menos hay un número desconocido, llamado incógnita o variable, y que se cumple para determinado valor numérico de dicha incógnita. Se denominan ecuaciones de primer grado a las igualdades algebraicas con incógnitas cuyo exponente es 1 (elevadas a uno, que no se escribe). Como procedimiento general para resolver ecuaciones enteras de primer grado se deben seguir los siguientes pasos: 1. Se reducen los términos semejantes, cuando es posible.

14 2. Se hace la transposición de términos (aplicando inverso aditivo o multiplicativo), los que contengan la incógnita se ubican en el miembro izquierdo, y los que carezcan de ella en el derecho. 3. Se reducen términos semejantes, hasta donde es posible. 4. Se despeja la incógnita, dividiendo ambos miembros de la ecuación por el coeficiente de la incógnita (inverso multiplicativo), y se simplifica. Resolución de ecuaciones de primer grado con una incógnita Para resolver ecuaciones de primer grado con una incógnita, aplicamos el criterio del operador inverso (inverso aditivo o inverso multiplicativo), como veremos en el siguiente ejemplo: Resolver la ecuación 2x 3 = 53 Debemos tener las letras a un lado y los números al otro lado de la igualdad (=), entonces para llevar el 3 al otro lado de la igualdad, le aplicamos el inverso aditivo (el inverso aditivo de 3 es +3, porque la operación inversa de la resta es la suma). Entonces hacemos: 2x = En el primer miembro 3 se elimina con +3 y tendremos: Despejamos y tendremos ahora: 2x = x = 56 x = 56 / 2 x = 28 Entonces el valor de la incógnita o variable "x" es 28.

15 Resolvamos otros ejemplos: Llevamos los términos semejantes a un lado de la igualdad y los términos independientes al otro lado de la igualdad (hemos aplicado operaciones inversas donde era necesario). Resolvemos las operaciones indicadas anteriormente. Aplicamos operaciones inversas, y simplificamos. (pasamos todos los términos con x a la izquierda, cambiado el signo 8x pasa como 8x) (redujimos los términos semejantes en el primer miembro: 5x 8x = 3x) (dividimos ambos términos por 3 para despejar la x ) ( 15 dividido 3 es igual a 5. Número negativo dividido por un número negativo, el resultado es positivo) Resolución de ecuaciones con agrupaciones de signos Para resolver este tipo de ecuaciones primero debemos suprimir los signos de agrupación considerando la ley de signos, y en caso de existir varias agrupaciones, desarrollamos de adentro hacia afuera las operaciones. Veamos el siguiente ejemplo: Primero quitamos los paréntesis. Reducimos términos semejantes. Ahora quitamos los corchetes.

16 Transponemos los términos, empleando el criterio de operaciones inversas. Nuevamente reducimos términos semejantes Despejamos x pasando a dividir a 2, luego simplificamos. Advertencia Para suprimir los signos de agrupación debemos tener en cuenta que: a) Si tenemos un signo + antes de un signo de agrupación no afecta en nada a lo que esté dentro de este signo. Por ejemplo: +(3x 5) = 3x 5 b) Si por el contrario, tenemos un signo antes del signo de agrupación, este signo afectará a todo lo que esté dentro del signo. Todos los términos dentro del signo de agrupación cambiarán de signo. Por ejemplo: (3x 5) = 3x + 5 Resolución de ecuaciones con productos incluidos Para resolver este tipo de ecuaciones, primero se efectúan los productos incluidos y luego se sigue el procedimiento general (aplicando el criterio de las operaciones inversas). Observemos un ejemplo: Resolvemos el producto indicado, y adicionalmente eliminamos los paréntesis. Llevamos los términos semejantes a un lado de la igualdad, y los términos independientes al otro lado (empleamos operaciones inversas.) Reducimos términos semejantes en ambos lados de la igualdad. Despejamos x pasando 3 a dividir.

17 Resolución de Problemas con Ecuaciones de primer grado La resolución de problemas en general, y mediante sistemas de ecuaciones en este caso particular, es un proceso complejo para el que, desgraciada o afortunadamente (según se mire), no hay reglas fijas ni resultados teóricos que garanticen un buen fin en todas las ocasiones. De todas formas, si hay algo que ayuda en cualquier caso a llevar a buen puerto la resolución de un problema es el orden. Por ello, hay que ser metódico y habituarse a proceder de un modo ordenado siguiendo unas cuantas fases en el desarrollo de dicha resolución. Las cuatro fases que habrá que seguir para resolver un problema son: I. Comprender el problema. II. Plantear el problema. III. Resolver el problema (en este caso, el sistema). IV. Comprobar la solución. 1. Comprender el problema. Leer detenidamente el enunciado. Hacer un gráfico o un esquema que refleje las condiciones del problema. Identificar los datos conocidos y las incógnitas. 3. Resolver el problema. Resolver las operaciones en el orden establecido. Resolver las ecuaciones o sistemas resultantes de la fase 2. Asegurarse de realizar correctamente las operaciones, las ecuaciones y los sistemas. 2. Plantear el problema. Pensar en las condiciones del problema y concebir un plan de acción, Elegir las operaciones y anotar el orden en que debes realizarlas. Expresar las condiciones del problema mediante ecuaciones. 4. Comprobar la solución. Comprobar si hay más de una solución. Comprobar que la solución obtenida verifica la ecuación o el sistema. Comprobar que las soluciones son acordes con el enunciado y que se cumplen las condiciones de éste.

18 Problema de edades Problema de mezclas Un comerciante tiene dos clases de aceite, la primera de $ 6.00 el litro y la segunda de $ 7.20 el litro. Cuántos litros hay que poner de cada clase de aceite para obtener 60 litros de mezcla a $ 7.00 el litro? 1. Planteamiento Clase A Clase B Mezcla Precio por litro 6 7,2 7 Número de litros x 60 - x Ecuación 6x + 7,2 ( 60 - x ) = 7.60 => x = Solución Clase A => 10 litros Clase B => = 50 litros

19 Universidad Autónoma de Querétaro. Facultad de Contaduría y Administración Matemáticas Álgebra Este material fue elaborado por: Cárdenas Rosas Oscar Uriel Vázquez Alvarado Daniel Vicente Modalidades Educativas y Tecnologías para el Aprendizaje Centro Universitario, Querétaro, 2011

Ecuaciones de primer grado o lineales

Ecuaciones de primer grado o lineales CATÁLOGO MATEMÁTICO POR JUAN GUILLERMO BUILES GÓMEZ BASE 8: ECUACIONES DE PRIMER Y DE SEGUNDO GRADO RESOLUCIÓN DE PROBLEMAS ECUACIONES DE PRIMER GRADO O LINEALES CON UNA SOLA INCÓGNITA: Teoría tomada de

Más detalles

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma. FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto

Más detalles

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Y POLINOMIOS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Y POLINOMIOS EXPRESIONES ALGEBRAICAS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman VARIABLES, INCÓGNITAS o INDETERMINADAS

Más detalles

UNIDAD DE APRENDIZAJE I

UNIDAD DE APRENDIZAJE I UNIDAD DE APRENDIZAJE I Saberes procedimentales Interpreta y utiliza correctamente el lenguaje simbólico para el manejo de expresiones algebraicas. 2. Identifica operaciones básicas con expresiones algebraicas.

Más detalles

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA. POLINOMIOS Y FRACCIONES ALGEBRAICAS.. Repaso de polinomios - Epresión algebraica. Valor numérico - Polinomios. Operaciones con polinomios.. Identidades notables - Cuadrado de una suma de una diferencia

Más detalles

Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios.

Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios. Productos notables Sabemos que se llama producto al resultado de una multiplicación. También sabemos que los valores que se multiplican se llaman factores. Se llama productos notables a ciertas expresiones

Más detalles

MATERIALES: Cuaderno de 100h cuadriculado, block de hojas milimetradas, calculadora, lápiz, borrador, lapicero de color verde

MATERIALES: Cuaderno de 100h cuadriculado, block de hojas milimetradas, calculadora, lápiz, borrador, lapicero de color verde MATERIALES: Cuaderno de 00h cuadriculado, block de hojas milimetradas, calculadora, lápiz, borrador, lapicero de color verde FACTORIZACION - Casos de Factorización - Factor común - Factor común por agrupación

Más detalles

2. EXPRESIONES ALGEBRAICAS

2. EXPRESIONES ALGEBRAICAS 2. EXPRESIONES ALGEBRAICAS Tales como, 2X 2 3X + 4 ax + b Se obtienen a partir de variables como X, Y y Z, constantes como -2, 3, a, b, c, d y cobinadas utilizando la suma, resta, multiplicación, división

Más detalles

CURSO PROPEDEUTICO DEALGEBRA PARA BQFT QUÍMICO FARMACEÚTICO BIOTECNÓLOGO CURSO PROPEDEUTICO AGOSTO 2013 ELABORÓ ALEJANDRO JAIME CARRETO SOSA

CURSO PROPEDEUTICO DEALGEBRA PARA BQFT QUÍMICO FARMACEÚTICO BIOTECNÓLOGO CURSO PROPEDEUTICO AGOSTO 2013 ELABORÓ ALEJANDRO JAIME CARRETO SOSA QUÍMICO FARMACEÚTICO BIOTECNÓLOGO CURSO PROPEDEUTICO AGOSTO 201 ELABORÓ ALEJANDRO JAIME CARRETO SOSA 1 Operaciones entre Quebrados (Fracciones) Sumar quebrados o fracciones: se calcula el común denominador,

Más detalles

UNIDAD DOS FACTORIZACIÓN

UNIDAD DOS FACTORIZACIÓN UNIDAD DOS FACTORIZACIÓN Factorizar quiere decir descomponer en factores, los factores son divisores de una expresión que, multiplicados entre sí, dan como resultado la primera expresión. FACTOR COMÚN

Más detalles

RESUMEN ALGEBRA BÁSICA

RESUMEN ALGEBRA BÁSICA RESUMEN ALGEBRA BÁSICA TERMINO ALGEBRAICO: Es una expresión matemática que consta de un producto (o cociente) de un número con una variable elevado a un exponente (o con varias variables). TÉRMINO ALGEBRAICO

Más detalles

1. OPERATORIA ALGEBRAICA 1.1 TÉRMINOS SEMEJANTES

1. OPERATORIA ALGEBRAICA 1.1 TÉRMINOS SEMEJANTES MATEMÁTICA MÓDULO 1 Eje temático: Álgebra 1. OPERATORIA ALGEBRAICA 1.1 TÉRMINOS SEMEJANTES Se denominan términos semejantes a aquellos que tienen la misma parte literal. Por ejemplo: -2a 2 b y 5a 2 b son

Más detalles

RESUMEN DE ALGEBRA. CONCEPTO: El pensador principal del algebra es Al-Hwarizmi; es de origen árabe.

RESUMEN DE ALGEBRA. CONCEPTO: El pensador principal del algebra es Al-Hwarizmi; es de origen árabe. RESUMEN DE ALGEBRA CONCEPTO: El pensador principal del algebra es Al-Hwarizmi; es de origen árabe. El álgebra es la rama del conocimiento de la matemática; es decir se desprende de ella. Estudia realidades

Más detalles

24 = = = = = 12. 2

24 = = = = = 12. 2 UNIVERSIDAD MARIANO GÁLVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CENTRO UNIVERSITARIO DE VILLA NUEVA CURSO MATEMÁTICAS APLICADA I 015 Lic. Manuel

Más detalles

UNIDAD DE APRENDIZAJE III

UNIDAD DE APRENDIZAJE III MATEMÁTICAS I ALGEBRA Unidad de Aprendizaje III UNIDAD DE APRENDIZAJE III Saberes procedimentales Saberes declarativos Expresa un polinomio en sus factores primos A Concepto de factores primos algebraicos

Más detalles

GUÍA DE APRENDIZAJE. PROCESO: Prestación del Servicio / Educación Superior

GUÍA DE APRENDIZAJE. PROCESO: Prestación del Servicio / Educación Superior GUÍA UNIDAD No. 04 Programa: Procesos Aduaneros Semestre: Primero 2012 Asignatura: Matemáticas Básicas Nombre Unidad: Factorización Subtemas: Casos de factorización Metodología de Formación: Presencial

Más detalles

OPERACIONES CON POLINOMIOS

OPERACIONES CON POLINOMIOS 4. 1 UNIDAD 4 OPERACIONES CON POLINOMIOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas en los que apliques las operaciones de suma, resta, multiplicación y división de polinomios.

Más detalles

TEMA 3. POLINOMIOS Y FRACCIONES ALGEBRAICAS. Ficha 0

TEMA 3. POLINOMIOS Y FRACCIONES ALGEBRAICAS. Ficha 0 Ficha 0 Un monomio es una expresión algebraica formada por el producto de un número, llamado coeficiente, por una o más variables con exponente natural o cero, llamadas parte literal. El grado es la suma

Más detalles

SERIE INTRODUCTORIA. REPASO DE ALGEBRA.

SERIE INTRODUCTORIA. REPASO DE ALGEBRA. SERIE INTRODUCTORIA. REPASO DE ALGEBRA. 1.- REDUCCION DE TÉRMINOS SEMEJANTES. Recuerde que los términos semejantes son aquellos que tienen las mismas letras con los mismos exponentes. Ejemplos: *7m; 5m

Más detalles

1. EXPRESIONES ALGEBRAICAS.

1. EXPRESIONES ALGEBRAICAS. TEMA 3: POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas

Más detalles

I.E.S. Tierra de Ciudad Rodrigo Departamento de Matemáticas TEMA 6. POLINOMIOS

I.E.S. Tierra de Ciudad Rodrigo Departamento de Matemáticas TEMA 6. POLINOMIOS TEMA 6. POLINOMIOS Una expresión algebraica es un conjunto de letras y números unidos por los signos matemáticos. Las expresiones algebraicas surgen de traducir al lenguaje matemático enunciados en los

Más detalles

RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO

RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO OBJETIVO RECONOCER EL GRADO, EL TÉRMINO Y LOS COEICIENTES DE UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma de monomios, que son los términos del polinomio.

Más detalles

Fundamentos de la Matemática UNEFA NÚCLEO TÁCHIRA GUÍA DE ESTUDIO CON FINES INSTRUCCIONALES

Fundamentos de la Matemática UNEFA NÚCLEO TÁCHIRA GUÍA DE ESTUDIO CON FINES INSTRUCCIONALES UNIDAD I: EXPRESIONES ALGEBRAICAS. El ÁLGEBRA es la rama de las Matemáticas que estudia la cantidad considerada del modo más generalizado posible, siendo los árabes los primeros en desarrollarla. En Álgebra

Más detalles

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 1º ESO. (2ª parte)

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 1º ESO. (2ª parte) TRABAJO DE MATEMÁTICAS PENDIENTES DE 1º ESO. (2ª parte) NÚMEROS RACIONALES REDUCCIÓN DE FRACCIONES AL MISMO DENOMINADOR Para reducir varias fracciones al mismo denominador se siguen los siguientes pasos:

Más detalles

Título: mar 6-1:39 PM (Página 1 de 20)

Título: mar 6-1:39 PM (Página 1 de 20) TEMA 5. ÁLGEBRA El lenguaje algebraico es un lenguaje matemático que combina números y letras unidos mediante operaciones aritméticas (+, -,, :) para expresar la realidad de forma concisa, inequívoca y

Más detalles

Expresiones algebraicas

Expresiones algebraicas Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas

Más detalles

PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas

PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas que se resuelven siguiendo Reglas y Fórmulas específicas para cada caso y cuyo resultado puede ser escrito por simple inspección, es decir

Más detalles

Ecuaciones de primer grado

Ecuaciones de primer grado Matemáticas Unidad 16 Ecuaciones de primer grado Objetivos Resolver problemas que impliquen el planteamiento y la resolución de ecuaciones de primer grado de la forma x + a = b; ax = b; ax + b = c, utilizando

Más detalles

53 ESO ÍNDICE: 1. EXPRESIONES ALGEBRAICAS 2. MONOMIOS 3. POLINOMIOS 4. IDENTIDADES 5. DIVISIÓN DE POLINOMIOS 6. FRACCIONES ALGEBRAICAS

53 ESO ÍNDICE: 1. EXPRESIONES ALGEBRAICAS 2. MONOMIOS 3. POLINOMIOS 4. IDENTIDADES 5. DIVISIÓN DE POLINOMIOS 6. FRACCIONES ALGEBRAICAS 53 ESO ÍNDICE: 1. EXPRESIONES ALGEBRAICAS. MONOMIOS 3. POLINOMIOS 4. IDENTIDADES 5. DIVISIÓN DE POLINOMIOS 6. FRACCIONES ALGEBRAICAS El lenguaje algebraico 5. 1 1. EXPRESIONES ALGEBRAICAS LENGUAJE ALGEBRAICO

Más detalles

Factorización ecuación identidad condicional término coeficiente monomio binomio trinomio polinomio grado ax3

Factorización ecuación identidad condicional término coeficiente monomio binomio trinomio polinomio grado ax3 Factorización Para entender la operación algebraica llamada factorización es preciso repasar los siguientes conceptos: Cualquier expresión que incluya la relación de igualdad (=) se llama ecuación. Una

Más detalles

Descomposición factorial. Suma o diferencia de cubos perfectos. P r o c e d i m i e n t o

Descomposición factorial. Suma o diferencia de cubos perfectos. P r o c e d i m i e n t o 103 Descomposición factorial Suma o diferencia de cubos perfectos P r o c e d i m i e n t o 1. Se abren dos paréntesis 2. En el primer paréntesis se escribe la suma o la diferencia, según el caso, de las

Más detalles

Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales Ejercicios Orden y valor absoluto...

Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales Ejercicios Orden y valor absoluto... ÍNDICE Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales... 3 Ejercicios... 5 Orden y valor absoluto... 6 Ejercicios... 7 Suma de números reales... 9 Reglas

Más detalles

DESARROLLO. a 2 ± 2ab + b 2. La cual para factorizarla, se deben seguir los siguientes pasos

DESARROLLO. a 2 ± 2ab + b 2. La cual para factorizarla, se deben seguir los siguientes pasos ENCUENTRO # 3 TEMA: Casos de Factorización CONTENIDOS:. Trinomio cuadrado perfecto. 2. Trinomio x 2 + bx + c. 3. Trinomio ax 2 + bx + c. 4. Casos especiales. Ejercicio reto. Una prueba tiene 25 preguntas,

Más detalles

Álgebra vs Aritmética. ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: Polinomios. Expresiones algebraicas. Álgebra elemental.

Álgebra vs Aritmética. ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: Polinomios. Expresiones algebraicas. Álgebra elemental. 16/01/01 ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: olinomios Álgebra vs Aritmética La Aritmética siempre opera sobre números concretos. El Álgebra hace cálculos simbólicos en los que las

Más detalles

Ecuaciones de primer ysegundo grado

Ecuaciones de primer ysegundo grado 86 _ 087-098.qxd 7//07 : Página 87 Ecuaciones de primer ysegundo grado INTRODUCCIÓN La unidad comienza diferenciando entre ecuaciones e identidades, para pasar luego a la exposición de los conceptos asociados

Más detalles

3º ESO POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS

3º ESO POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS º ESO POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. POLINOMIOS 1.- POLINOMIOS Una expresión algebraica está formada por números y letras asociados por medio de las operaciones aritméticas (suma, resta, multiplicación,

Más detalles

2. Se extraen las raíces cuadradas del primer y tercer término. a2 = a

2. Se extraen las raíces cuadradas del primer y tercer término. a2 = a ENCUENTRO # 3 TEMA: Casos de Factorización EJERCICIOS RETO:. Una prueba tiene 25 preguntas, y por cada respuesta correcta se dan 4 puntos y se les resta un punto por cada respuesta incorrecta. Si se omite

Más detalles

Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5

Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5 Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1 POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS COCIENTE DE MONOMIOS El cociente de un monomio entre otro monomio de grado igual

Más detalles

GUIA ALGEBRA PARTE I. Ejercicios básicos de aritmética EJERCICIOS

GUIA ALGEBRA PARTE I. Ejercicios básicos de aritmética EJERCICIOS 1 GUIA ALGEBRA PARTE I Ejercicios básicos de aritmética QUEBRADOS Fracciones mixtas ejemplo 3 4/5 Una fracción mixta es un número entero y una fracción combinados, como 1 3 / 4. Fracciones propias ejemplo

Más detalles

POLINOMIOS. OPERACIONES CON POLINOMIOS: 1.- Suma y resta de polinomios: Sumando o restando los monomios que sean semejantes.

POLINOMIOS. OPERACIONES CON POLINOMIOS: 1.- Suma y resta de polinomios: Sumando o restando los monomios que sean semejantes. Recordemos previamente algunos conceptos: POLINOMIOS MONOMIO: expresión algebraica de la forma a x n, siendo a un número real y n un número natural. ( a se llama coeficiente, x n es la parte literal y

Más detalles

Centro Regional Universitario De Bocas del Toro

Centro Regional Universitario De Bocas del Toro Centro Regional Universitario De Bocas del Toro Nociones Fundamentales del Álgebra El Álgebra es una rama de la matemática que se ocupa de las cantidades más generales y para representarla utiliza letras,

Más detalles

PRINCIPALES CASOS DE FACTORIZACIÓN CASO Características y cuándo aplicarlo Cómo realizar la factorización Ejemplos

PRINCIPALES CASOS DE FACTORIZACIÓN CASO Características y cuándo aplicarlo Cómo realizar la factorización Ejemplos 1 2 4 PRINCIPALES CASOS DE FACTORIZACIÓN CASO Características y cuándo aplicarlo Cómo realizar la factorización Ejemplos Factor Común Factor Común por Agrupación de Términos Diferencia de Cuadrados Perfectos

Más detalles

APUNTES DE FUNDAMENTOS DE MATEMATICA. CASO I: Cuando todos los términos de un polinomio tienen un factor común.

APUNTES DE FUNDAMENTOS DE MATEMATICA. CASO I: Cuando todos los términos de un polinomio tienen un factor común. FACTORIZACION DE POLINOMIOS. CASO I: Cuando todos los términos de un polinomio tienen un factor común. Cuando se tiene una expresión de dos o más términos algebraicos y si se presenta algún término común,

Más detalles

Curso º ESO. UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón

Curso º ESO. UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón 2º ESO UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón OBJETIVOS CONTENIDOS PROCEDIMIENTOS Lenguaje algebraico. Normas y Traducción

Más detalles

GUIA ALGEBRA PARTE I. Ejercicios básicos de aritmética QUEBRADOS

GUIA ALGEBRA PARTE I. Ejercicios básicos de aritmética QUEBRADOS 1 GUIA ALGEBRA PARTE I Ejercicios básicos de aritmética QUEBRADOS Fracciones mixtas ejemplo 3 4/5 Una fracción mixta es un número entero y una fracción combinados, como 1 3 / 4. Fracciones propias ejemplo

Más detalles

Colegio La Salle Envigado FORMANDO EN VALORES PARA LA VIDA GUIA FACTORIZACION

Colegio La Salle Envigado FORMANDO EN VALORES PARA LA VIDA GUIA FACTORIZACION GUIA FACTORIZACION Esta guía tiene como objetivo afianzar los conocimientos teórico-prácticos en los diferentes casos de factorización, para ello se darán en esta guía algunos ejercicios de factorización

Más detalles

MONOMIOS Y POLINOMIOS

MONOMIOS Y POLINOMIOS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas y se representan por letras.

Más detalles

Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto

Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto En esta unidad vas a comenzar el estudio del álgebra, el lenguaje de las matemáticas. Vas a aprender

Más detalles

UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS

UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS C u r s o : Matemática Material N 15 UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS GUÍA TEÓRICO PRÁCTICA Nº 1 EVALUACIÓN DE EXPRESIONES ALGEBRAICAS Evaluar una expresión algebraica consiste en sustituir

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas Expresiones algebraicas. Ecuaciones de primer grado

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas Expresiones algebraicas. Ecuaciones de primer grado lasmatemáticaseu Pedro Castro Ortega Epresiones algebraicas Ecuaciones de primer grado 1 Epresiones algebraicas 11 Definición de epresión algebraica Una epresión algebraica es un conjunto de números letras

Más detalles

FACULTAD DE INGENIERIA Y CIENCIAS BASICAS LOGICA Y PENSAMIENTO MATEMATICO GUIA DE FACTORIZACIÓN DOCENTE: IDALY MONTOYA A.

FACULTAD DE INGENIERIA Y CIENCIAS BASICAS LOGICA Y PENSAMIENTO MATEMATICO GUIA DE FACTORIZACIÓN DOCENTE: IDALY MONTOYA A. DESCOMPOSICION FACTORIAL Factorizar significa descomponer en dos o más componentes. Por ejemplo: 15= 3x 5 ; 7=3 x 9 ; 99 = 9 x 11 ; 6 = 3 x FACTORES: Se llaman factores o divisores de una gran expresión

Más detalles

TEMA 4: EXPRESIONES ALGEBRAICAS.

TEMA 4: EXPRESIONES ALGEBRAICAS. TEMA 4: EXPRESIONES ALGEBRAICAS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. CURSO 2011-2012 Página 1 de 14 Profesor: Manuel González de León Curso

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS

OBJETIVOS CONTENIDOS PROCEDIMIENTOS Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender el concepto de polinomio y otros asociados

Más detalles

Mó duló 06: Á lgebra Elemental II

Mó duló 06: Á lgebra Elemental II INTERNADO MATEMÁTICA 016 Guía para el Estudiante Mó duló 06: Á lgebra Elemental II Objetivo: Factorizar expresiones algebraicas y generalizar la operatoria de fracciones por medio del álgebra, que le permita

Más detalles

Semana 2: Introducción al Álgebra

Semana 2: Introducción al Álgebra Semana 2: Introducción al Álgebra Taller de Preparación para Prueba PLANEA Ing. Jonathan Quiroga Tinoco Conalep Tehuacán P.T.B. en ADMO, SOMA y EMEC UNIDAD 08 Lenguaje algebraico 1. Lenguaje y expresión

Más detalles

TEMA: 5 ÁLGEBRA 3º ESO

TEMA: 5 ÁLGEBRA 3º ESO TEMA: 5 ÁLGEBRA 3º ESO 1. MONOMIO Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. Ejemplo: x

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS Unidad didáctica 5 EXPRESIONES ALGEBRAICAS. POLINOMIOS. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones

Más detalles

UNIDAD 4. POLINOMIOS. (PÁGINA 263)

UNIDAD 4. POLINOMIOS. (PÁGINA 263) UNIDAD 4. POLINOMIOS. (PÁGINA 263) LENGUAJE ALGEBRAICO Una expresión algebraica es aquella que combina: números, operaciones y letras. Ejemplos de expresiones algebraicas: 3 + x x 2 y x + y x 2 y LENGUAJE

Más detalles

MATEMÁTICAS ÁLGEBRA (TIC)

MATEMÁTICAS ÁLGEBRA (TIC) COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS ÁLGEBRA (TIC) GRADO:8 O A, B DOCENTE: Nubia E. Niño C. FECHA: 23 / 02 / 15 GUÍA UNIFICADA: # 1 5; # 1-6 y 1-7 DESEMPEÑOS:

Más detalles

LICEO Nº1 JAVIERA CARRERA 2012 MATEMATICA Benjamín Rojas F. FACTORIZACIÓN

LICEO Nº1 JAVIERA CARRERA 2012 MATEMATICA Benjamín Rojas F. FACTORIZACIÓN LICEO Nº1 JAVIERA CARRERA 2012 MATEMATICA Benjamín Rojas F. FACTORIZACIÓN Factorizar es transformar un número o una expresión algebraica en un producto. Ejemplos: Transformar en un producto el número 6

Más detalles

EXPRESIONES ALGEBRAICAS.

EXPRESIONES ALGEBRAICAS. EXPRESIONES ALGEBRAICAS. Se dice expresión algebraica aquella que está formada por números y letras unidos mediante signos. 4x 2 + 1 2 3y Observa que existen dos variables x e y. En la siguiente expresión

Más detalles

Definiciones I. Una solución de una ecuación son aquellos valores que al sustituirlos en la ecuación hacen que la igualdad sea cierta.

Definiciones I. Una solución de una ecuación son aquellos valores que al sustituirlos en la ecuación hacen que la igualdad sea cierta. Ecuaciones Definiciones I Una ecuación es una igualdad algebraica que se verifica únicamente para un conjunto determinado de valores de las variables o indeterminadas que forman la ecuación. a + b 2 =

Más detalles

Así que aplicando la formula y haciendo una conversión sabemos que tenemos que correr a casi 2m/s.

Así que aplicando la formula y haciendo una conversión sabemos que tenemos que correr a casi 2m/s. DESPEJE DE FÓRMULAS Las Ecuaciones y Fórmulas que ocupamos de forma escasa en nuestra vida diaria nos sirven para resolver problemas cotidianos como por ejemplo saber la velocidad que necesitamos para

Más detalles

Tema 6 Lenguaje Algebraico. Ecuaciones

Tema 6 Lenguaje Algebraico. Ecuaciones Tema 6 Lenguaje Algebraico. Ecuaciones 1. El álgebra El álgebra es una rama de las matemáticas que emplea números y letras con las operaciones aritméticas de sumar, restar, multiplicar, dividir, potencias

Más detalles

Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice

Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice 1. ECUACIONES... 2 1.1. Ecuaciones de primer grado... 2 1.2. Ecuaciones de segundo grado... 3 1.2.1. Ecuación de segundo grado completa...

Más detalles

Expresiones algebraicas (1º ESO)

Expresiones algebraicas (1º ESO) Epresiones algebraicas (º ESO) Lenguaje numérico y lenguaje algebraico. El lenguaje en el que intervienen números y signos de operaciones se denomina lenguaje numérico. Lenguaje usual Lenguaje numérico

Más detalles

Expresiones algebraicas

Expresiones algebraicas Epresiones algebraicas Matemáticas I 1 Epresiones algebraicas Epresiones algebraicas. Monomios y polinomios. Monomios y polinomios. Una epresión algebraica es una combinación de letras, números y signos

Más detalles

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las

Más detalles

UNIDAD DE APRENDIZAJE II

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE II NÚMEROS RACIONALES Jerarquía de Operaciones En matemáticas una operación es una acción realizada sobre un número (en el caso de la raíz y potencia) o donde se involucran dos números

Más detalles

Uniboyacá GUÍA DE APRENDIZAJE NO 7. Psicología e Ingeniería Ambiental

Uniboyacá GUÍA DE APRENDIZAJE NO 7. Psicología e Ingeniería Ambiental Uniboyacá GUÍA DE APRENDIZAJE NO 7 1. IDENTIFICACIÓN Programa académico Psicología e Ingeniería Ambiental Actividad académica o curso Matemáticas básicas Semestre Segundo de 2012 Actividad de aprendizaje

Más detalles

5.- Potencia de 1 Un número racional elevado a 1 es igual a sí mismo.

5.- Potencia de 1 Un número racional elevado a 1 es igual a sí mismo. POTENCIAS DE EXPONENTE ENTERO Y BASE RACIONAL 1.- 2.- 3.- PROPIEDADES DE LAS POTENCIAS DE NÚMEROS RACIONALES Pulsa en las siguientes pestañas para analizar cada una de las propiedades de la multiplicación:

Más detalles

Factorizaciòn. Factorizar un polinomio. Caso I - Factor común. Factor común monomio. Factor común polinomio

Factorizaciòn. Factorizar un polinomio. Caso I - Factor común. Factor común monomio. Factor común polinomio Factorizaciòn La factorización es expresar un objeto o número (por ejemplo, un número compuesto, una matriz o un polinomio) como producto de otros objetos más pequeños (factores), (en el caso de números

Más detalles

Introducción al Álgebra

Introducción al Álgebra Capítulo 3 Introducción al Álgebra L a palabra álgebra deriva del nombre del libro Al-jebr Al-muqābāla escrito en el año 825 D.C. por el matemático y astrónomo musulman Mohamad ibn Mūsa Al-Khwārizmī. El

Más detalles

Nombre del estudiante: Grupo: Hora: Salón:

Nombre del estudiante: Grupo: Hora: Salón: Instituto Tecnológico de Saltillo. Cuadernillo de Ejercicios de Álgebra. CURSO DE NIVELACIÓN DE ÁLGEBRA 2013 Nombre del estudiante: Grupo: Hora: Salón: CONTENIDO DEL CUADERNILLO. UNIDAD NÚMEROS REALES.

Más detalles

BOLETÍN REPASO MATEMÁTICAS 3º ESO - 2ª PARTE

BOLETÍN REPASO MATEMÁTICAS 3º ESO - 2ª PARTE BOLETÍN REPASO MATEMÁTICAS 3º ESO - ª PARTE Una expresión algebraica es toda combinación de números y letras unidos por los signos de las operaciones aritméticas: adición, sustracción, multiplicación,

Más detalles

ECUACIONES DE PRIMER Y SEGUNDO GRADO

ECUACIONES DE PRIMER Y SEGUNDO GRADO 7. UNIDAD 7 ECUACIONES DE PRIMER Y SEGUNDO GRADO Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas que involucren la solución de ecuaciones de primer grado y de segundo grado

Más detalles

El simbolismo del lenguaje algebraico ha ido modificándose al paso del tiempo. Sus orígenes se remontan a Babilonia, Egipto, Grecia y Arabia.

El simbolismo del lenguaje algebraico ha ido modificándose al paso del tiempo. Sus orígenes se remontan a Babilonia, Egipto, Grecia y Arabia. SUMA Y RESTA ALGEBRAICA El álgebra es una rama de la Matemáticas, que se caracteriza por el empleo de letras para representar números, con ellas y con los símbolos que se han utilizado para indicar operaciones

Más detalles

RESUMEN DE CONCEPTOS

RESUMEN DE CONCEPTOS RESUMEN DE CONCEPTOS 1º ESO MATEMÁTICAS NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número exacto de veces. Ejemplo: 16 es múltiplo

Más detalles

ax 3 -bx 2 = x 2 (ax-b) 2b 5 -b 3 = b 3 (2b 2-1)

ax 3 -bx 2 = x 2 (ax-b) 2b 5 -b 3 = b 3 (2b 2-1) CPU Calle Mercado # 555 Teléfono 3 366191 FACTORIZACIÓN Caso I: Factor Común Cómo Reconocer: Existe un factor común en todos los términos. Los números pueden factorizarse en este caso si existe máximo

Más detalles

El cuadrado de la suma de dos números es igual al cuadrado del primero más el cuadrado del segundo más el doble producto del primero por el segundo.

El cuadrado de la suma de dos números es igual al cuadrado del primero más el cuadrado del segundo más el doble producto del primero por el segundo. IDENTIDADES NOTABLES Definición Qué es una identidad notable? Es una identidad algebraica que, por su relevancia y por la gran cantidad de veces que se usa en las operaciones matemáticas, recibe el nombre

Más detalles

LA FACTORIZACIÓN COMO HERRAMIENTA PARA LA SIMPLIFICACIÓN DE EXPRESIONES ALGEBRAICAS.

LA FACTORIZACIÓN COMO HERRAMIENTA PARA LA SIMPLIFICACIÓN DE EXPRESIONES ALGEBRAICAS. LA FACTORIZACIÓN COMO HERRAMIENTA PARA LA SIMPLIFICACIÓN DE EXPRESIONES ALGEBRAICAS. Material adaptado con fines instruccionales por Teresa Gómez, de: Ochoa, A., González N., Lorenzo J. y Gómez T. (008)

Más detalles

Contenido. 1. Definiciones. 2. Operaciones Algebraicas 2.1 Suma y resta 2.2 Multiplicación 2.3 Productos Notables 2.4 Factorización 2.

Contenido. 1. Definiciones. 2. Operaciones Algebraicas 2.1 Suma y resta 2.2 Multiplicación 2.3 Productos Notables 2.4 Factorización 2. Contenido 1. Definiciones 1.1 Término algebraico 1.2 Expresión algebraica 1.3 términos semejantes 2. Operaciones Algebraicas 2.1 Suma y resta 2.2 Multiplicación 2.3 Productos Notables 2.4 Factorización

Más detalles

Guía 4. FRACCIONARIOS: si al menos uno de sus términos contiene letras en su denominador

Guía 4. FRACCIONARIOS: si al menos uno de sus términos contiene letras en su denominador Guía 4 TIPOS DE POLINOMIOS NOTA: término independiente de un polinomio con relación a una letra es el término que no contiene dicha letra. ENTEROS: si cada término del polinomio es entero Ejemplo: mn +

Más detalles

UNIDAD DIDÁCTICA #5 CONTENIDO I. PRODUCTOS NOTABLES III. DIVISIÓN DE POLINOMIOS II. CUBO DE LA SUMA O DIFERENCIA DE DOS CANTIDADES

UNIDAD DIDÁCTICA #5 CONTENIDO I. PRODUCTOS NOTABLES III. DIVISIÓN DE POLINOMIOS II. CUBO DE LA SUMA O DIFERENCIA DE DOS CANTIDADES UNIDAD DIDÁCTICA #5 CONTENIDO I. PRODUCTOS NOTABLES II. CUBO DE LA SUMA O DIFERENCIA DE DOS CANTIDADES III. DIVISIÓN DE POLINOMIOS IV. FACTORIZACIÓN DE EXPRESIONES ALGEBRAICAS I. PRODUCTOS NOTABLES Los

Más detalles

POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO

POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO Dado que los polinomios se utilizan para describir curvas de diferentes tipos, la gente los utiliza en el mundo real para dibujar curvas. Por ejemplo,

Más detalles

FACTORIZACIÓN 1. FACTOR COMUN:

FACTORIZACIÓN 1. FACTOR COMUN: FACTORIZACIÓN Factorizar una expresión algebraica consiste en escribirla como un producto. Cuando realizamos las multiplicaciones: a) 2x (x 2 3x + 2) = 2x 3 6x 2 + 4x b) (x + 7)(x + 5) = x 2 + 12x + 35

Más detalles

Matemáticas. Matías Puello Chamorro. Algebra Operativa. 9 de agosto de 2016

Matemáticas. Matías Puello Chamorro. Algebra Operativa.  9 de agosto de 2016 Matemáticas Algebra Operativa Matías Puello Chamorro http://www.unilibrebaq.edu.co 9 de agosto de 2016 Índice 1. Introducción 3 2. Definiciones básicas del Algebra 4 2.1. Definición de igualdad............................

Más detalles

Ecuaciones de primer grado

Ecuaciones de primer grado Ecuaciones de primer grado º ESO - 3º ESO Definición, elementos y solución de la ecuación de primer grado Una ecuación de primer grado es una igualdad del tipo a b donde a y b son números reales conocidos,

Más detalles

CASO I: FACTORIZACION DE BINOMIOS

CASO I: FACTORIZACION DE BINOMIOS CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS ACTIVIDAD ACADEMICA: FUNDAMENTOS MATEMATICOS DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD N : FACTORIZACION

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION

INSTITUCION EDUCATIVA LA PRESENTACION INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: HUGO HERNAN BEDOYA Y LUIS LOPEZ TIPO DE GUIA: NIVELACION PERIODO GRADO FECHA DURACION 8 A/B Abril

Más detalles

Lic. Manuel de Jesús Campos Boc

Lic. Manuel de Jesús Campos Boc UNIVERSIDAD MARIANO GÁLVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CENTRO UNIVERSITARIO DE VILLA NUEVA CURSO MATEMÁTICAS APLICADA I 015 Lic. Manuel

Más detalles

4 Ecuaciones e inecuaciones

4 Ecuaciones e inecuaciones Ecuaciones e inecuaciones INTRODUCCIÓN Comenzamos esta unidad diferenciando entre identidades y ecuaciones, y definiendo los conceptos asociados a cualquier ecuación: miembros, términos, coeficientes,

Más detalles

Se llama factores o divisores, a las expresiones algebraicas que multiplicadas entre sí, dan como producto la primera expresión.

Se llama factores o divisores, a las expresiones algebraicas que multiplicadas entre sí, dan como producto la primera expresión. FACTORIZACION Se llama factores o divisores, a las expresiones algebraicas que multiplicadas entre sí, dan como producto la primera expresión. Al proceso de encontrar los factores o divisores a partir

Más detalles

FACTORIZACIÓN GUÍA CIU NRO:

FACTORIZACIÓN GUÍA CIU NRO: República Bolivariana de Venezuela Ministerio de la Defensa Universidad Nacional Experimental Politécnica de la Fuerza Armada Núcleo Caracas Curso de Inducción Universitaria CIU Cátedra: Razonamiento Matemático

Más detalles

DESARROLLO D) 4. para a = 1 y b = 2 (a 2 + b 2 )(2a 3b 2 ) es:

DESARROLLO D) 4. para a = 1 y b = 2 (a 2 + b 2 )(2a 3b 2 ) es: ENCUENTRO # 10 TEMA:Operaciones con polinomios CONTENIDOS: 1. Multiplicación de polinomios. 2. Productos notables. DESARROLLO Ejercicio Reto x 2 1. Al racionalizar el denominador de la fracción 3 + se

Más detalles

; En este término algebraico, tenemos que 3 es el factor numérico y el coeficiente literal.

; En este término algebraico, tenemos que 3 es el factor numérico y el coeficiente literal. Álgebra Término algebraico: es el producto y/o división de una o más variables (factor literal) y un coeficiente o factor numérico. Por ejemplo: el cálculo del área de un triángulo la rapidez media ; En

Más detalles

a) Factoriza el monomio común. En este caso 6 se puede dividir de cada término:

a) Factoriza el monomio común. En este caso 6 se puede dividir de cada término: Materia: Matemática de 5to Tema: Factorización y Resolución de ecuaciones 1) Factorización Marco Teórico Decimos que un polinomio está factorizado completamente cuando no podemos factorizarlo más. He aquí

Más detalles

Una igualdad se compone de dos expresiones unidas por el signo igual. Una identidad es una igualdad que es cierta para cualquier valor de las letras.

Una igualdad se compone de dos expresiones unidas por el signo igual. Una identidad es una igualdad que es cierta para cualquier valor de las letras. RESUMEN. ECUACIONES Igualdad Una igualdad se compone de dos expresiones unidas por el signo igual. Identidad Una identidad es una igualdad que es cierta para cualquier valor de las letras. Ecuación Una

Más detalles

cómo expresarías?. ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: POLINOMIOS Grupo: 3º A Expresiones algebraicas Álgebra vs Aritmética

cómo expresarías?. ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: POLINOMIOS Grupo: 3º A Expresiones algebraicas Álgebra vs Aritmética 16/01/01 ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: POLINOMIOS Grupo: º A cómo expresarías?. La altura de mi hermano si te digo que mide 10 cm más que mi hermana: El perímetro de un triángulo

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles
Sitemap