Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download ""

Transcripción

1 Titulo: FACTORIZACION (Descomposición Factorial) Año escolar: 2do: año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico: El autor de este trabajo solicita su valiosa colaboración en el sentido de enviar cualquier sugerencia y/o recomendación a la siguiente dirección : Igualmente puede enviar cualquier ejercicio o problema que considere pueda ser incluido en el mismo. Si en sus horas de estudio o práctica se encuentra con un problema que no pueda resolver, envíelo a la anterior dirección y se le enviará resuelto a la suya. APUNTES DE ÁLGEBRA Ing. José Luis Albornoz Salazar

2 DESCOMPOSICIÓN FACTORIAL (FACTO- RIZACIÓN) : Se llama factores o divisores de una expresión algebraica a las expresiones algebraicas que multiplicadas entre sí dan como producto la primera expresión. Así, multiplicando a por a + b tenemos : a.(a + b) = a 2 + ab a y a + b, que multiplicadas entre sí dan como producto a 2 + ab, son factores o divisores de a 2 + ab. CUANDO TODOS LOS TERMINOS DE UN POLINO- MIO TIENEN UN FACTOR COMÚN : a) FACTOR COMÚN MONOMIO: Ejemplo : Descomponer en factores a 2 + 2a a 2 y 2a contienen el factor común a. Escribimos el factor común a como coeficiente de un paréntesis; dentro del paréntesis escribimos los cocientes de dividir a 2 a = a y 2a a = 2, y tendremos ; a 2 + 2a = a.(a + 2) Del mismo modo. (X + 2).(X + 3) = X 2 + 5X + 6 Ejemplo 2 : Descomponer en factores 0b 30ab 2 Luego, X + 2 y X + 3 son factores de X 2 + 5X + 6 Descomponer en factores o Factorizar una expresión algébrica es convertirla en el producto indicado de sus factores. FACTORIZAR UN MONOMIO : Los factores de un monomio se pueden hallar por simple inspección. Así, los factores de 5ab son 3, 5, a y b. Por tanto : 5ab = (3).(5).(a).(b) Los coeficientes 0 y 30 tienen los factores 2, 5 y 0, Tomamos 0 porque siempre se saca el mayor factor común. De las letras el único factor común es b porque está en los dos términos de la expresión dada y la tomamos con su menor exponente b. El factor común es 0b. Lo escribimos como coeficiente de un paréntesis y dentro ponemos los cocientes de dividir 0b 0b = y 30ab 2 0b = 3ab y tendremos Ejercicios : 0b 30ab 2 = 0b.( 3ab) FACTORIZAR UN POLINOMIO : No todo polinomio se puede descomponer en dos o más factores distintos de, pues del mismo modo que, en Aritmética, hay números primos que solo son divisibles por ellos mismos y por, hay expresiones algebraicas que solo son divisibles por ellos mismos y por, y que por tanto, no son el producto de otras expresiones algebraicas. Así a + b no puede descomponerse en dos factores distintos de porque solo es divisible por a + b y por. APUNTES DE ÁLGEBRA Ing. José Luis Albornoz Salazar - 5 -

3 Ejercicios : b) FACTOR COMÚN POLINOMIO: Ejemplo : Descomponer en factores X(a + b) + m(a + b) Los dos términos de esta expresión tienen como factor común el binomio (a + b) Escribo este factor común (a + b) y lo multiplico por otro paréntesis que tendrá dentro los dos coeficientes que tiene el factor común en la ecuación inicial (respetando el signo que tenga cada uno). O sea : X(a + b) + m(a + b) = (a + b).(x + m) APUNTES DE ÁLGEBRA Ing. José Luis Albornoz Salazar

4 FACTOR COMÚN POR AGRUPACIÓN DE TÉR- MINOS: Ejemplo : Descomponer en factores ax + bx + ay + by Los dos primeros términos tienen el factor común X y los dos últimos el factor común Y. Agrupamos los dos primeros términos en un paréntesis y los dos últimos en otro precedido del signo + porque el tercer término tiene el signo + y tendremos : (ax + bx) + (ay + by) Notamos que la expresión está conformada ahora por dos binomios (ax + by) y (ay + by). Cada binomio puede descomponerse en factores (Factor común monomio pág. 5). (ax + bx) = X.(a + b) (ay + by) = Y.(a + b) Una vez realizada la descomposición de ambos monomios la expresión (ax + bx) + (ay + by) quedaría como : X.(a + b) + Y.(a + b) Esta expresión puede descomponerse sacando factor común polinomio de acuerdo a lo explicado en la página 52. X.(a + b) + Y.(a + b) = (a + b).(x + Y) Resumiendo podemos indicar toda la operación así: ax + bx + ay + by (ax + bx) + (ay + by) = X.(a + b) + Y.(a + b) = (a + b).(x + Y) APUNTES DE ÁLGEBRA Ing. José Luis Albornoz Salazar

5 La agrupación puede hacerse generalmente de más de un modo con tal que los dos términos que se agrupan tengan algún factor común, y siempre que las cantidades que quedan dentro de los paréntesis después de sacar el factor común en cada grupo sean exactamente iguales. Si esto no es posible lograrlo la expresión dada no se puede descomponer por este método. Así, en el ejemplo anterior podemos agrupar el primero y tercer término que tienen el factor común a y el segundo y cuarto término que tienen el factor común b y tendremos: ax + bx + ay + by (ax + ay) + (bx + by) = a.(x + Y) + b.(x + Y) = (X + Y).(a + b) El resultado obtenido es el mismo con ambos métodos. Ejercicios : APUNTES DE ÁLGEBRA Ing. José Luis Albornoz Salazar

6 y se separan estas raíces por el signo del segundo término. El binomio así formado, que es la raíz cuadrada del trinomio, se multiplica por sí mismo o se eleva al cuadrado. Ejercicios : m 2 + 2m + = (m + ).(m+) = (m + ) 2 TRINOMIO CUADRADO PERFECTO : Un trinomio es cuadrado perfecto cuando es el cuadrado de un binomio, o sea, el producto de dos binomios iguales. Así, a 2 + 2ab + b 2 es cuadrado perfecto de a + b porque : (a + b) 2 = (a + b).(a + b) = a 2 + 2ab + b 2 Del mismo modo, (2X + 3Y) 2 = 4X 2 + 2XY + 9Y 2 luego 4X 2 + 2XY + 9Y 2 es un trinomio cuadrado perfecto. Para factorizar un trinomio cuadrado perfecto se extrae la raíz cuadrada al primero y tercer término del trinomio y se separan estas raíces por el signo del segundo término. El binomio así formado, que es la raíz cuadrada del trinomio, se multiplica por sí mismo o se eleva al cuadrado. Ejemplo : Factorizar m 2 + 2m + Se extrae la raíz cuadrada al primero y tercer término del trinomio APUNTES DE ÁLGEBRA Ing. José Luis Albornoz Salazar

7 DIFERENCIA DE CUADRADOS PERFECTOS : En los productos notables (PRODUCTO DE LA SUMA POR LA DIFERENCIA DE DOS CANTIDADES pág. 36) se vió que la suma de dos cantidades multiplicadas por su diferencia es igual al cuadrado del minuendo menos el cuadrado del sustraendo, o sea: (a + b).(a b) = a 2 b 2 Luego, recíprocamente; a 2 b 2 = (a + b).(a b) Para factorizar una diferencia de cuadrados se extrae la raíz cuadrada al minuendo y al sustraendo y se multiplica la suma de estas raíces cuadradas por la diferencia entre la raíz del minuendo y la del sustraendo. Ejemplos : TRINOMIO DE LA FORMA X 2 + bx + c : Trinomios de la forma X 2 + bx + c son trinomios como : X 2 + 5X + 6 ; m 2 + 5m 4 ; X 2 8X + 8 que cumplen las condiciones siguientes :. El coeficiente del primer término es. 2. El primer término es una letra cualquiera elevada al cuadrado. 3. El segundo término tiene la misma letra que el primero con exponente y su coeficiente es una cantidad cualquiera, positiva o negativa. 4. El tercer término es independiente de la letra que aparece en el primero y segundo término y es una cantidad cualquiera, positiva o negativa. REGLA PRÁCTICA PARA FACTORIZAR UN TRINOMIO DE LA FORMA X 2 + bx + c Ejemplo : Factorizar X 2 + 5X + 6 El trinomio se descompone en dos binomios cuyo primer término es la raíz cuadrada del primer término del trinomio (X 2 ), o sea X : X 2 + 5X + 6 = (X ).(X ) En el primer binomio después de X se escribe el signo del segundo término del trinomio (+5X). X 2 + 5X + 6 = (X + ).(X + ) En el segundo binomio después de X se escribe el signo que resulta de multiplicar el signo del segundo término del trinomio por el signo del tercer término del trinomio (en este caso multiplicamos los signos de +5X y de +6) APUNTES DE ÁLGEBRA Ing. José Luis Albornoz Salazar

8 X 2 + 5X + 6 = (X + ).(X + ) Ejercicios : Ahora, buscamos dos números que sumados den +5 y multiplicados den +6. Esos números son 2 y 3, luego : X 2 + 5X + 6 = (X + 2).(X + 3) Ejemplo 2 : Factorizar m 2 7m + 2 El trinomio se descompone en dos binomios cuyo primer término es la raíz cuadrada del primer término del trinomio (m 2 ), o sea m : m 2 7m + 2 = (m ).(m ) En el primer binomio después de m se escribe el signo del segundo término del trinomio ( 7m). m 2 7m + 2 = (m ).(m ) En el segundo binomio después de m se escribe el signo que resulta de multiplicar el signo del segundo término del trinomio por el signo del tercer término del trinomio (en este caso multiplicamos los signos de 7m y de +2) El procedimiento anterior es aplicable a la factorización de trinomios que no siendo de la forma X 2 + bx + c se parecen mucho ya que podemos notar que la letra del primer término tiene raíz cuadrada exacta y la letra del segundo término tiene la misma letra que el primero y su exponente es la raíz cuadrada del exponente del primer término. Ejemplos : m 2 7m + 2 = (m ).(m ) Ahora, buscamos dos números que sumados den 7 y multiplicados den +2. Esos números son 3 y 4, luego : m 2 7m + 2 = (m 3).(m 4) APUNTES DE ÁLGEBRA Ing. José Luis Albornoz Salazar

9 Podemos entonces deducir la siguiente REGLA PRÁCTICA PARA FACTORIZAR UN TRINOMIO DE LA FORMA ax 2 + bx + c : ) Se calculan las dos raíces que satisfagan la ecuación ax 2 + bx + c = 0 con la utilización de la fórmula general de 2do. Grado (también conocida como resolvente). 2) Se descompone el trinomio en dos binomios cuyo primer término sea la X. 3) A continuación de cada X se coloca cada una de las raíces pero con signo cambiado. 4) Se indica la multiplicación de los dos binomios anteriores por el valor de a. FACTORIZACIÓN UTILIZANDO LA FÓRMULA GENERAL DE SEGUNDO GRADO : La Forma Factorizada de un polinomio de segundo grado es : P(x) = a.(x X ).(X X 2 ) Donde X y X2 son las dos raíces del polinomio y a es el coeficiente principal. ax 2 + bx + c En estos apuntes, a partir de la página 48, hemos estudiado las ecuaciones de segundo grado con una incógnita. Hemos dicho que las raíces de una ecuación de segundo grado son los valores de la incógnita que satisfacen la ecuación y que toda ecuación de segundo grado tiene dos raíces. La fórmula para hallar las dos raíces de una ecuación de segundo grado es : ax 2 + bx + c = a.(x X ).(X X 2 ) Ejemplo : Factorizar la ecuación 2X 2 4X = 6 En la página 49 de estos apuntes calculamos las dos raíces de esta ecuación con la utilización de la fórmula general de segundo grado. Las raíces de la ecuación 2X 2 4X 6 = 0 son X = 3 y X =, porque ambos valores satisfacen esta ecuación. Conociendo las dos raíces y tomando en cuenta la Forma Factorizada de un polinomio de 2do grado, podemos decir que : 2X 2 4X 6 = 2.(X 3).(X + ) Note que los números que acompañan a la X en los dos binomios del miembro de la derecha son las raíces calculadas anteriormente pero con el signo cambiado. Ejemplo 2 : Factorizar el trinomio 49X 2 70X + 25 En la página 50 de estos apuntes calculamos las dos raíces de esta ecuación con la utilización de la fórmula general de segundo grado. APUNTES DE ÁLGEBRA Ing. José Luis Albornoz Salazar

10 Ejemplo 4 : Factorizar el trinomio Note que los números que acompañan a la X en los dos binomios del miembro de la derecha son las raíces calculadas anteriormente pero con el signo cambiado. Ejemplo 3 : Factorizar el trinomio X X Primero ordenados el trinomio : X 2 5X 56 y luego aplicamos la fórmula general de segundo grado (resolvente) : Conocidas las raíces decimos que : 3X 2 + 5X 2 = 3.(X 2/3).(X ) Note que los números que acompañan a la X en los dos binomios del miembro de la derecha son las raíces calculadas anteriormente pero con el signo cambiado. Ejemplo 5 : Factorizar el trinomio 25X 2 5X +2 Conocidas las raíces decimos que : X 2 5X 56 =.(X + 8).(X + 7) APUNTES DE ÁLGEBRA Ing. José Luis Albornoz Salazar

11 Conocidas las raíces decimos que : 25X 2 5X +2 = 25.(X 2/5).(X /5) Note que los números que acompañan a la X en los dos binomios del miembro de la derecha son las raíces calculadas anteriormente pero con el signo cambiado. 6) El polinomio se puede factorizar total o parcialmente. Está factorizado en forma total cuando el número de factores coincide con el grado del polinomio, en caso contrario se dice que está factorizado parcialmente. FACTORIZACIÓN DE UN POLINOMIO APLICANDO LA REGLA DE RUFFINI : CONSIDERACIONES : ) Para factorizar por el método de RUFFINI, es necesario que el polinomio posea un término independiente. 2) El polinomio se debe ordenar en forma decreciente, es decir desde la potencia más alta hasta el término independiente. 3) Se debe vigilar que el polinomio esté completo, en aquellos polinomios donde falta un término debemos colocar el mismo acompañado del coeficiente cero. 4) Las posibles raíces del polinomio son todos aquellos números positivos y negativos que dividan, en forma exacta, al término independiente. 5) Cuando se determine el valor de una raíz, para los efectos de colocarlo como factor siempre se le debe cambiar el signo, esto ocurre porque al igualarlo a cero el número cambia de signo. Para aplicar la REGLA DE RUFFINI debo tener presente que las raices enteras que puede tener el polinomio serán algunos de los divisores del término independiente. (en este caso en particular de 2) o sea que se prueba con, -, 2, -2, 3, -3, 4, -4, 6, -6, 2 y -2. Primero se copian los coeficientes del polinomio en una tabla similar a la siguiente: X 4 4X 3 X 2 + 6X Se copia el primer coeficiente debajo de él mismo : X 4 4X 3 X 2 + 6X APUNTES DE ÁLGEBRA Ing. José Luis Albornoz Salazar

12 Se prueba con el primer divisor del término independiente (a esto lo llamaremos raiz)( en ese caso): Se multiplica la raiz por el resultado de la suma algebraica realizada y este producto se copia debajo del tercer coeficiente : X 4 4X 3 X 2 + 6X X 4 4X 3 X 2 + 6X Se multiplica la raiz con el primer coeficiente que se bajó y el producto se copia debajo del segundo coeficiente : Luego se efectúa la suma algebraica de las dos cantidades ubicadas en la columna donde se colocó el producto: X 4 4X 3 X 2 + 6X 2 X 4 4X 3 X 2 + 6X Se multiplica la raiz por el resultado de la suma algebraica realizada y este producto se copia debajo del cuarto coeficiente : Luego se efectúa la suma algebraica de las dos cantidades ubicadas en la columna donde se colocó el producto: X 4 4X 3 X 2 + 6X 2 X 4 4X 3 X 2 + 6X Luego se efectúa la suma algebraica de las dos cantidades ubicadas en la columna donde se colocó el producto: APUNTES DE ÁLGEBRA Ing. José Luis Albornoz Salazar - 6 -

13 X 4 4X 3 X 2 + 6X Si el resultado hubiese sido distinto de cero, habría que seguir probando los demás divisores de 2. Hasta ahora tenemos un producto como se observa al utilizar los nuevos coeficientes obtenidos: Se multiplica la raíz por el resultado de la suma algebraica realizada y este producto se copia debajo del quinto coeficiente : X 4 4X 3 X 2 + 6X Luego se efectúa la suma algebraica de las dos cantidades ubicadas en la columna donde se colocó el producto: 2 X 4 4X 3 X 2 + 6X ( X ). ( X 3 3X 2 4X + 2 ) 6 2 Note que la raiz calculada es, pero por lo indicado en la consideración 5 se debe colocar Lo que hemos hecho hasta ahora es conseguir la primera raiz entera del polinomio que queremos factorizar, tenemos entonces que: X 4 4X 3 X 2 + 6X 2 = ( X ) ( X 3 3X 2 4X + 2 ) X 4 4X 3 X 2 + 6X De hecho ya hemos factorizado el polinomio, pero el segundo factor de tercer grado debemos intentar seguir factorizándolo. Para buscar la segunda raíz se recomienda utilizar el método de Ruffini para el segundo factor de tercer grado ( X 3-3X 2-4X + 2 ) probando con los divisores del término independiente (2 en este caso también) Como el resultado final es cero ( 0 ), esto nos indica que el si es una raiz del polinomio y nos sirve para factorizar. Procedemos entonces de manera similar a lo explicado al inicio de este ejercicio pero ahora con el polinomio de grado tres : APUNTES DE ÁLGEBRA Ing. José Luis Albornoz Salazar

14 De nuevo pruebo con : X 3 3X 2 4X Como el resultado final es distinto de cero (6 en este caso), sigo probando los demás divisores de 2. Probando ahora con : X 3 3X 2 4X Como el resultado final es distinto de cero (2 en este caso), sigo probando los demás divisores de 2. Probando ahora con 2 : 2 X 3 3X 2 4X Como el resultado final es cero, hemos conseguido la segunda raiz: X 3 3X 2 4X ( X 2 ). ( X 2 X 6 ) De donde X 3 3X 2 4X + 2 = ( X 2) ( X 2 X 6 ) El polinomio inicial va quedando factorizado de la siguiente manera : X 4 4X 3 X 2 + 6X 2 = ( X ) ( X 2) ( X 2 X 6 ) Solo nos queda factorizar el tercer factor que es un polinomio de segundo grado ( X 2 X 6 ) Para algunos alumnos resulta mas fácil factorizar buscando dos números que sumados den y multiplicados den 6 (es decir 2 y 3). Como la finalidad de este trabajo es mostrar la utilización de la Regla de Ruffini, vamos a continuar con su aplicación. Probando con 2 : X 2 X ( X + 2 ). ( X 3 ) La nueva raiz es 2 y el último factor es ( X 3 ): 2 APUNTES DE ÁLGEBRA Ing. José Luis Albornoz Salazar

15 De donde X 2 X 6 = ( X + 2) ( X 3) El polinomio inicial quedará factorizado de la siguiente manera: X 4 4X 3 X 2 + 6X 2 = ( X ) ( X 2) ( X + 2) ( X 3) Según como sea el polinomio hay métodos que se pueden aplicar y otros que no. Se aconseja que se intenten aplicar los cinco métodos sucesivamente, es decir, en primer lugar se puede extraer el factor común, y luego se pueden seguir aplicando otros de los métodos. Algunas veces es posible combinar varios métodos a la vez. Lo importante es que el alumno se ejercite en los métodos existentes y cuando se presente el problema tenga suficientes y claros criterios para afrontar la situación. En algunas ocasiones y de acuerdo al problema planteado se puede paralizar el proceso de factorización de acuerdo a nuestra conveniencia; en este ejercicio en particular podemos señalar varias formas de factorización de este polinomio: Para aplicar la REGLA DE RUFFINI debo tener presente que las raices enteras que puede tener el polinomio serán algunos de los divisores del término independiente. Esta condición no nos obliga a que probemos una sola vez cada raiz; por ejemplo si probamos con y la suma final nos da 0, esto significa que es una raiz (la primera), pero como un polinomio puede tener dos o más raices iguales se recomienda que a continuación pruebe con la misma raiz ( en este caso) El ejercicio siguiente persigue demostrar que lo indicado anteriormente es recomendable hacerlo Probando con : Con una raíz: X 4 4X 3 X 2 + 6X 2 = ( X ) ( X 3 3X 2 4X + 2 ) Con dos raíces: X 4 4X 3 X 2 + 6X 2 = ( X ) ( X 2) ( X 2 X 6 ) Lo que hemos hecho hasta ahora es conseguir la primera raiz entera del polinomio que queremos factorizar, tenemos entonces que: X 4 + 3X 3 5X 2 + 7X 6 = ( X ) ( X 3 + 4X 2 - X + 6 ) Con todas sus raíces: Para buscar la segunda raiz se recomienda utilizar el método de Ruffini para el segundo factor de tercer grado indicado anteriormente X 4 4X 3 X 2 + 6X 2 = ( X ) ( X 2) ( X + 2) ( X 3) ( X 3 + 4X 2 - X + 6 ) probando con los divisores del término independiente (6 en este caso también) APUNTES DE ÁLGEBRA Ing. José Luis Albornoz Salazar

16 De nuevo pruebo con Para aplicar la REGLA DE RUFFINI en aquellos polinomios donde falta un término debemos colocar el mismo acompañado del coeficiente cero. Hemos encontrado la segunda raíz ( en este caso también es ) y el polinomio inicial va quedando factorizado así : X 4 + 3X 3 5X 2 + 7X 6 = ( X ) ( X ) ( X 2 + 5X 6 ) Solo nos queda factorizar el tercer factor que es un polinomio de segundo grado ( X 2 + 5X 6 ) En este caso en particular notamos que el polinomio no tiene el termino de grado tres, se conformará de la siguiente manera : Probando con : X 4 + 0X 3 X 2 8X 8 Probando de nuevo con : Como el resultado es distinto de cero quiere decir que no es raiz. La nueva raiz es y el último factor es ( X + 6 ): Probando con - : Calculadas como han sido todas las raices podemos decir que: X 4 + 3X 3 5X 2 + 7X 6 = ( X ) ( X ) (X ) ( X + 6) Note que las tres primeras raices son iguales y podemos decir que: X 4 + 3X 3 5X 2 + 7X 6 = ( X ) 3 ( X + 6) Como el resultado es igual a cero quiere decir que si es una raiz. APUNTES DE ÁLGEBRA Ing. José Luis Albornoz Salazar

17 El polinomio va quedando factorizado así : FACTORIZAR : 2X X 2 3X 2 X 4 X 2 8X 8 = ( X + ) ( X 3 X 2 0X 8 ) Probando de nuevo con pero ahora con el segundo factor de tercer grado ( X 3 X 2 0X 8 ) 2 2X X 2 3X La segunda raíz también es, el polinomio va quedando factorizado así : X 4 X 2 8X 8 = ( X + ) ( X + ) ( X 2 2X 8 ) Solo nos falta factorizar el polinomio ( X 2 2X 8 ) Para factorizar el polinomio ( X 2 2X 8 ) buscamos dos números que sumados den 2 y multiplicados den 8 ( en este caso 2 y 4 ) 2X X 2 3X 2 = ( X ) ( X + 2 ) ( 2X + ) FACTORIZAR : 2X 3 2X X 3 2X 2 + 0X Como ( X 2 2X 8 ) = ( X + 2) ( X 4 ) El polinomio inicial quedará factorizado así : X 4 X 2 8X 8 = ( X + ) ( X + ) ( X + 2) ( X 4 ) O también puede ser indicado así : X 4 X 2 8X 8 = ( X + ) 2 ( X + 2) ( X 4 ) 2X 3 2X = 2 ( X + 2 ) ( X 4 ) ( X 4 ) APUNTES DE ÁLGEBRA Ing. José Luis Albornoz Salazar

18 COCIENTE NO FACTORIZABLE (Factorización Parcial) No todos los polinomios pueden ser factorizados totalmente. Algunas veces nos encontraremos con polinomios que NO permiten conseguir todas sus raíces ya que dentro de su factorización presentan en su cociente un polinomio no factorizable. FACTORIZAR : X 4 + 5X 3 + 8X 2 + 7X + 3 Probamos con y el resultado no fue igual a cero por lo que no es una raíz. Probando con : X 4 + 5X 3 + 8X 2 + 7X ( X + ) ( X 3 + 4X 2 + 4X + 3) Como el resultado es igual a cero, si es raíz, entonces podemos decir que : Probamos con, -. 2, - 2 y 3 y detrminamos que ninguno de esos valores son raíces. Probamos con 3 : X 3 + 4X 2 + 4X ( X + 3 ) ( X 2 + X + ) Como el resultado es igual a cero, 3 si es raíz, entonces podemos decir que : X 3 + 4X 2 + 4X + 3 = ( X + 3 ) ( X 2 + X + ) Cuando tratamos de factorizar al polinomio X 2 + X + notaremos que no es factorizable ( ni siquiera utilizando la fórmula cuadrática 4 ), luego podemos afirmar que: X 4 + 5X 3 + 8X 2 + 7X + 3 = ( X + ) ( X + 3 ) ( X 2 + X + ) 3 X 4 + 5X 3 + 8X 2 + 7X + 3 = ( X + ) ( X 3 + 4X 2 + 4X + 3) Ahora tratamos de factorizar al polinomio X 3 + 4X 2 + 4X + 3 APUNTES DE ÁLGEBRA Ing. José Luis Albornoz Salazar

Titulo: RUFFINI (Factorización) Año escolar: 5to.. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico: martilloatomico@gmail.com

Más detalles

APUNTES DE FUNDAMENTOS DE MATEMATICA. CASO I: Cuando todos los términos de un polinomio tienen un factor común.

APUNTES DE FUNDAMENTOS DE MATEMATICA. CASO I: Cuando todos los términos de un polinomio tienen un factor común. FACTORIZACION DE POLINOMIOS. CASO I: Cuando todos los términos de un polinomio tienen un factor común. Cuando se tiene una expresión de dos o más términos algebraicos y si se presenta algún término común,

Más detalles

2. EXPRESIONES ALGEBRAICAS

2. EXPRESIONES ALGEBRAICAS 2. EXPRESIONES ALGEBRAICAS Tales como, 2X 2 3X + 4 ax + b Se obtienen a partir de variables como X, Y y Z, constantes como -2, 3, a, b, c, d y cobinadas utilizando la suma, resta, multiplicación, división

Más detalles

5. Producto de dos binomios de la forma: ( ax + c)( bx d )

5. Producto de dos binomios de la forma: ( ax + c)( bx d ) PRODUCTOS NOTABLES Y FACTORIZACIÓN. Productos Notables: Son polinomios que se obtienen de la multiplicación entre dos o más polinomios que poseen características especiales o expresiones particulares,

Más detalles

Titulo: POTENCIACION Año escolar: 3er. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico: martilloatomico@gmail.com

Más detalles

UNIDAD DOS FACTORIZACIÓN

UNIDAD DOS FACTORIZACIÓN UNIDAD DOS FACTORIZACIÓN Factorizar quiere decir descomponer en factores, los factores son divisores de una expresión que, multiplicados entre sí, dan como resultado la primera expresión. FACTOR COMÚN

Más detalles

Titulo: SISTEMAS DE ECUACIONES Año escolar: 3er. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico: martilloatomico@gmail.com

Más detalles

Factorización de polinomios FACTORIZACIÓN DE POLINOMIOS

Factorización de polinomios FACTORIZACIÓN DE POLINOMIOS FACTORIZACIÓN DE POLINOMIOS 1. Polinomios Un monomio es el producto de un número real por una o más letras que pueden estar elevadas a exponentes que sean números naturales. La suma de los exponentes de

Más detalles

FACTORIZACIÓN. De acuerdo con lo anterior, el resultado de una factorización siempre será un producto.

FACTORIZACIÓN. De acuerdo con lo anterior, el resultado de una factorización siempre será un producto. FACTORIZACIÓN. Factorizar consiste como su nombre lo indica, en obtener factores y como factores los elementos de una multiplicación, entonces factorizar es convertir una suma en una multiplicación indicada

Más detalles

FACTORIZACIÓN GUÍA CIU NRO:

FACTORIZACIÓN GUÍA CIU NRO: República Bolivariana de Venezuela Ministerio de la Defensa Universidad Nacional Experimental Politécnica de la Fuerza Armada Núcleo Caracas Curso de Inducción Universitaria CIU Cátedra: Razonamiento Matemático

Más detalles

DESCOMPOSICION FACTORIAL

DESCOMPOSICION FACTORIAL DESCOMPOSICION FACTORIAL JOSE VICENTE CONTRERAS JULIO Licenciado en Matemáticas y Física ACTIVIDAD DE AUTONOMIA http://jvcontrerasj.com http://www.jvcontrerasj.3a2.com/ FACTORIZAR UNA EXPRESION ES ENCONTRAR

Más detalles

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las

Más detalles

LA FACTORIZACIÓN COMO HERRAMIENTA PARA LA SIMPLIFICACIÓN DE EXPRESIONES ALGEBRAICAS.

LA FACTORIZACIÓN COMO HERRAMIENTA PARA LA SIMPLIFICACIÓN DE EXPRESIONES ALGEBRAICAS. LA FACTORIZACIÓN COMO HERRAMIENTA PARA LA SIMPLIFICACIÓN DE EXPRESIONES ALGEBRAICAS. Material adaptado con fines instruccionales por Teresa Gómez, de: Ochoa, A., González N., Lorenzo J. y Gómez T. (008)

Más detalles

Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios.

Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios. Productos notables Sabemos que se llama producto al resultado de una multiplicación. También sabemos que los valores que se multiplican se llaman factores. Se llama productos notables a ciertas expresiones

Más detalles

PRODUCTOS NOTABLES. Definición: son aquellos productos cuyo desarrollo se conocen fácilmente por simple observación. Y son:

PRODUCTOS NOTABLES. Definición: son aquellos productos cuyo desarrollo se conocen fácilmente por simple observación. Y son: PRODUCTOS NOTABLES Definición: son aquellos productos cuyo desarrollo se conocen fácilmente por simple observación. Y son: Cuadrado de la suma de dos cantidades Cuadrado de la diferencia de dos cantidades

Más detalles

Se llama factores o divisores, a las expresiones algebraicas que multiplicadas entre sí, dan como producto la primera expresión.

Se llama factores o divisores, a las expresiones algebraicas que multiplicadas entre sí, dan como producto la primera expresión. FACTORIZACION Se llama factores o divisores, a las expresiones algebraicas que multiplicadas entre sí, dan como producto la primera expresión. Al proceso de encontrar los factores o divisores a partir

Más detalles

Titulo: SISTEMAS DE INECUACIONES (INECUACIONES SIMULTANEAS) Año escolar: 3er año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela

Más detalles

Titulo: COMO GRAFICAR UNA FUNCION RACIONAL Año escolar: 4to. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico:

Más detalles

PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas

PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas que se resuelven siguiendo Reglas y Fórmulas específicas para cada caso y cuyo resultado puede ser escrito por simple inspección, es decir

Más detalles

Guía de Estudios de Algebra

Guía de Estudios de Algebra Guía de Estudios de Algebra Licenciatura en Optometría ALTUZAR INGENERIA Índice Presentación... 3 Propósito... 3 Criterios de Evaluación... 3 Bloque Uno: Fundamentos algebraicos... 4 Propósito... 4 Actividades

Más detalles

Colegio San Patricio Matemática 3 año Prof. Selva Hernández Trabajo Práctico N 9 : Factorización de polinomios.

Colegio San Patricio Matemática 3 año Prof. Selva Hernández Trabajo Práctico N 9 : Factorización de polinomios. Colegio San Patricio Matemática 3 año - 2015 Prof. Selva Hernández Trabajo Práctico N 9 : Factorización de polinomios. Factorizar un polinomio es escribirlo como producto de factores irreducibles. El concepto

Más detalles

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +...

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 x 1 + a 0 Siendo a n, a n -1... a 1, a o números,

Más detalles

LICEO Nº1 JAVIERA CARRERA 2012 MATEMATICA Benjamín Rojas F. FACTORIZACIÓN

LICEO Nº1 JAVIERA CARRERA 2012 MATEMATICA Benjamín Rojas F. FACTORIZACIÓN LICEO Nº1 JAVIERA CARRERA 2012 MATEMATICA Benjamín Rojas F. FACTORIZACIÓN Factorizar es transformar un número o una expresión algebraica en un producto. Ejemplos: Transformar en un producto el número 6

Más detalles

RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO

RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO OBJETIVO RECONOCER EL GRADO, EL TÉRMINO Y LOS COEICIENTES DE UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma de monomios, que son los términos del polinomio.

Más detalles

Factorización de Polinomios. Profesora Ericka Salas González

Factorización de Polinomios. Profesora Ericka Salas González Factorización de Polinomios Profesora Ericka Salas González 19 de marzo de 2006 Índice general 0.1. QUE ES FACTORIZAR UN POLINOMIO..... 2 0.1.1. Factor............................ 2 0.1.2. Factorizar..........................

Más detalles

Uniboyacá GUÍA DE APRENDIZAJE NO 7. Psicología e Ingeniería Ambiental

Uniboyacá GUÍA DE APRENDIZAJE NO 7. Psicología e Ingeniería Ambiental Uniboyacá GUÍA DE APRENDIZAJE NO 7 1. IDENTIFICACIÓN Programa académico Psicología e Ingeniería Ambiental Actividad académica o curso Matemáticas básicas Semestre Segundo de 2012 Actividad de aprendizaje

Más detalles

PRINCIPALES CASOS DE FACTORIZACIÓN CASO Características y cuándo aplicarlo Cómo realizar la factorización Ejemplos

PRINCIPALES CASOS DE FACTORIZACIÓN CASO Características y cuándo aplicarlo Cómo realizar la factorización Ejemplos 1 2 4 PRINCIPALES CASOS DE FACTORIZACIÓN CASO Características y cuándo aplicarlo Cómo realizar la factorización Ejemplos Factor Común Factor Común por Agrupación de Términos Diferencia de Cuadrados Perfectos

Más detalles

a) Factoriza el monomio común. En este caso 6 se puede dividir de cada término:

a) Factoriza el monomio común. En este caso 6 se puede dividir de cada término: Materia: Matemática de 5to Tema: Factorización y Resolución de ecuaciones 1) Factorización Marco Teórico Decimos que un polinomio está factorizado completamente cuando no podemos factorizarlo más. He aquí

Más detalles

CONCEPTOS GENERALES SOBRE LA FACTORIZACIÓN: Qué es factorizar o factorear un polinomio?

CONCEPTOS GENERALES SOBRE LA FACTORIZACIÓN: Qué es factorizar o factorear un polinomio? CONCEPTOS GENERALES SOBRE LA FACTORIZACIÓN: Qué es factorizar o factorear un polinomio? Factorizar o Factorear significa "transformar en multiplicación" (o "producto", como también se le llama a la multiplicación).

Más detalles

Titulo: INECUACIONES LINEALES Año escolar: 3er año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico: martilloatomico@gmail.com

Más detalles

Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023

Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #8: jueves, 9 de junio de 2016. 8 Factorización Conceptos básicos Hasta

Más detalles

martilloatomico@gmail.com

martilloatomico@gmail.com Titulo: PRODUCTOS NOTABLES Año escolar: 2do: año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico: martilloatomico@gmail.com

Más detalles

POLINOMIOS En esta unidad aprenderás a:

POLINOMIOS En esta unidad aprenderás a: POLINOMIOS En esta unidad aprenderás a: Reconocer polinomios y calcular su valor numérico Realizar operaciones con polinomios. Manejar la regla de Ruffini y el teorema del resto para encontrar las raíces

Más detalles

SERIE INTRODUCTORIA. REPASO DE ALGEBRA.

SERIE INTRODUCTORIA. REPASO DE ALGEBRA. SERIE INTRODUCTORIA. REPASO DE ALGEBRA. 1.- REDUCCION DE TÉRMINOS SEMEJANTES. Recuerde que los términos semejantes son aquellos que tienen las mismas letras con los mismos exponentes. Ejemplos: *7m; 5m

Más detalles

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma. FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles

martilloatomico@gmail.com

martilloatomico@gmail.com Titulo: RADICACION Año escolar: 3er. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico: martilloatomico@gmail.com

Más detalles

MONOMIOS Y POLINOMIOS

MONOMIOS Y POLINOMIOS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas y se representan por letras.

Más detalles

Factorización. A 1 A 2 X ancho. f) A T = 352 m 2 largo largo Desarrollo: a) L 1 = 20m b) L 2 = 24m c) A 1 =? d) A 2 =? e) X = ancho 20 cm. 24 cm.

Factorización. A 1 A 2 X ancho. f) A T = 352 m 2 largo largo Desarrollo: a) L 1 = 20m b) L 2 = 24m c) A 1 =? d) A 2 =? e) X = ancho 20 cm. 24 cm. Factorización La Factorización se procede en forma contraria al desarrollo de Productos Notables es decir, nos dan un polinomio que debemos expresar como multiplicación (factores). Presentándosenos los

Más detalles

Expresiones algebraicas

Expresiones algebraicas Epresiones algebraicas Matemáticas I 1 Epresiones algebraicas Epresiones algebraicas. Monomios y polinomios. Monomios y polinomios. Una epresión algebraica es una combinación de letras, números y signos

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA:

INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICA. ASIGNATURA: MATEMATICA. NOTA DOCENTE: EDISON MEJIA MONSALVE. TIPO DE GUIA: CONCEPTUAL - EJERCITACION. PERIODO GRADO N FECHA DURACION

Más detalles

open green road Guía Matemática PRODUCTOS NOTABLES profesor: Nicolás Melgarejo .co

open green road Guía Matemática PRODUCTOS NOTABLES profesor: Nicolás Melgarejo .co Guía Matemática PRODUCTOS NOTABLES profesor: Nicolás Melgarejo.co 1. Introducción Es usual en matemática intentar simplificar todas las expresiones y definiciones, utilizando el mínimo de elementos o símbolos

Más detalles

UNIDAD 5: ÁLGEBRA. Nacho Jiménez ANT ÍNDICE SIG

UNIDAD 5: ÁLGEBRA. Nacho Jiménez ANT ÍNDICE SIG UNIDAD 5: ÁLGEBRA Nacho Jiménez 0. Conceptos previos ÍNDICE 1. Para qué sirve el álgebra? 2. Expresiones algebraicas 2.1 Monomios 2.2 Suma y resta de monomios 2.3 Multiplicación de monomios 2.4 División

Más detalles

FACTORIZACIÓN DE POLINOMIOS GUIA DE NIVELACION 3 PERIODO

FACTORIZACIÓN DE POLINOMIOS GUIA DE NIVELACION 3 PERIODO FACTORIZACIÓN DE POLINOMIOS GUIA DE NIVELACION 3 PERIODO Recuerde que: 1. Factorizar una expresión algebraica consiste en escribirla como un producto. 2. Existen varios casos de factorización. Revisemos

Más detalles

Factorización ecuación identidad condicional término coeficiente monomio binomio trinomio polinomio grado ax3

Factorización ecuación identidad condicional término coeficiente monomio binomio trinomio polinomio grado ax3 Factorización Para entender la operación algebraica llamada factorización es preciso repasar los siguientes conceptos: Cualquier expresión que incluya la relación de igualdad (=) se llama ecuación. Una

Más detalles

UNIDAD I FUNDAMENTOS BÁSICOS

UNIDAD I FUNDAMENTOS BÁSICOS República Bolivariana de Venezuela Universidad Alonso de Ojeda Administración Mención Gerencia y Mercadeo UNIDAD I FUNDAMENTOS BÁSICOS Elaborado por: Ing. Ronny Altuve Ciudad Ojeda, Mayo 2016 ÁLGEBRA Es

Más detalles

Titulo: COMO GRAFICAR UNA FUNCION DE SEGUNDO GRADO Año escolar: 4to. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo

Más detalles

Semana 6. Factorización. Parte I. Semana Productos 7 notables. Parte II. Empecemos! Qué sabes de...? El reto es...

Semana 6. Factorización. Parte I. Semana Productos 7 notables. Parte II. Empecemos! Qué sabes de...? El reto es... Semana Productos 7 notables. Parte II Semana 6 Empecemos! El tema que estudiarás en esta sesión está muy relacionado con el de productos notables, la relación entre estos y la factorización, dado que son

Más detalles

TEMA 4: EXPRESIONES ALGEBRAICAS.

TEMA 4: EXPRESIONES ALGEBRAICAS. TEMA 4: EXPRESIONES ALGEBRAICAS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. CURSO 2011-2012 Página 1 de 14 Profesor: Manuel González de León Curso

Más detalles

martilloatomico@gmail.com

martilloatomico@gmail.com Titulo: ECUACIONES IRRACIONALES Año escolar: 5to. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico: martilloatomico@gmail.com

Más detalles

TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO

TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO 1. División de polinomios Dados dos polinomios P (el dividendo) y D (el divisor), dividir P entre D es encontrar dos polinomios Q (el cociente)

Más detalles

Se dice que dos monomios son semejantes cuando tienen la misma parte literal

Se dice que dos monomios son semejantes cuando tienen la misma parte literal Expresiones algebraicas 1 MONOMIOS Conceptos Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural.

Más detalles

UNIDAD DE APRENDIZAJE I

UNIDAD DE APRENDIZAJE I UNIDAD DE APRENDIZAJE I Saberes procedimentales Interpreta y utiliza correctamente el lenguaje simbólico para el manejo de expresiones algebraicas. 2. Identifica operaciones básicas con expresiones algebraicas.

Más detalles

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA. POLINOMIOS Y FRACCIONES ALGEBRAICAS.. Repaso de polinomios - Epresión algebraica. Valor numérico - Polinomios. Operaciones con polinomios.. Identidades notables - Cuadrado de una suma de una diferencia

Más detalles

ECUACIONES.

ECUACIONES. . ECUACIONES... Introducción. Recordemos que el valor numérico de un polinomio (y, en general, de cualquier epresión algebraica) se calcula sustituyendo la/s variable/s por números (que, en principio,

Más detalles

POLINOMIOS. FACTORIZACIÓN

POLINOMIOS. FACTORIZACIÓN POLINOMIOS FACTORIZACIÓN JUSTIFICACIÓN Es muy fácil realizar multiplicaciones de números naturales Más dificultad entraña el problema inverso: la factorización Así, realizar la multiplicación 7 es trivial,

Más detalles

MATE IV Serie Álgebra 2015/01/26 NOMENCLATURA ALGEBRAICA

MATE IV Serie Álgebra 2015/01/26 NOMENCLATURA ALGEBRAICA NOMENCLATURA ALGEBRAICA Definición (Término). Es una expresión algebraica que consta de un solo símbolo o de varios símbolos no separados entre sí por el signo + o -. Por ejemplo a, 3b, xy, son términos.

Más detalles

martilloatomico@gmail.com

martilloatomico@gmail.com Titulo: OPERACIONES CON POLINOMIOS (Reducción de términos semejantes, suma y resta de polinomios, signos de agrupación, multiplicación y división de polinomios) Año escolar: 2do: año de bachillerato Autor:

Más detalles

Expresiones algebraicas

Expresiones algebraicas Expresiones algebraicas Una expresión algebraica es una combinación de letras y números relacionadas por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Una epresión algebraica es aquella en la que se operan números conocidos y números desconocidos representados por las letras a, b, c,, y, z,..., que se denominan

Más detalles

Guía de Estudio Prueba de Aptitud Académica Matemática

Guía de Estudio Prueba de Aptitud Académica Matemática Escuela Politécnica PROGRAMA DE PRUEBAS DE ADMISIÓN Guía de Estudio Prueba de Aptitud Académica Matemática Ejército de Guatemala Visite: www.politecnica.edu.gt INTRODUCCIÓN Esta guía de estudio de matemática

Más detalles

Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1

Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1 Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1 TEMA 3 ÁLGEBRA 3.1 FACTORIZACIÓN DE POLINOMIOS LA DIVISIBILIDAD EN LOS POLINOMIOS Un polinomio P(x) es divisible por otro polinomio Q(x) cuando el cociente

Más detalles

UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN CURSO PROPEDEÚTICO ÁREA: MATEMÁTICAS

UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN CURSO PROPEDEÚTICO ÁREA: MATEMÁTICAS UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN CURSO PROPEDEÚTICO ÁREA: MATEMÁTICAS TEMA 1. ÁLGEBRA Parte de las Matemáticas que se dedica en sus aspectos más elementales. A

Más detalles

Factorización - Álgebra

Factorización - Álgebra Factorización - Álgebra Ana María Beltrán Docente Matemáticas Febrero 4 de 2013 1 Qué es factorizar? Definición 1. Factorizar un polinomio es representarlo mediante el producto de otros polinomios de menor

Más detalles

Contenido: 1. Definición y clasificación. Polinomios.

Contenido: 1. Definición y clasificación. Polinomios. Polinomios. Contenido:. Definición y clasificación.. Operaciones.. Simplificación. 4. Productos notables.. Factorización. 6. Completar cuadrados. 7. Nociones de despeje.. Definición y clasificación Definición.

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION

INSTITUCION EDUCATIVA LA PRESENTACION INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: HUGO HERNAN BEDOYA Y LUIS LOPEZ TIPO DE GUIA: NIVELACION PERIODO GRADO FECHA DURACION 8 A/B Abril

Más detalles

POLINOMIOS. El grado de un polinomio P(x) es el mayor exponente al que se encuentra elevada la variable x.

POLINOMIOS. El grado de un polinomio P(x) es el mayor exponente al que se encuentra elevada la variable x. POLINOMIOS Un POLINOMIO es una expresión algebraica de la forma: x 1 + a 0 P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 Siendo a n, a n - 1... a 1, a o números, llamados coeficientes.

Más detalles

martilloatomico@gmail.com

martilloatomico@gmail.com Titulo: SUMA Y RESTA DE POLINOMIOS Año escolar: 2do: año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico:

Más detalles

1. OPERATORIA ALGEBRAICA 1.1 TÉRMINOS SEMEJANTES

1. OPERATORIA ALGEBRAICA 1.1 TÉRMINOS SEMEJANTES MATEMÁTICA MÓDULO 1 Eje temático: Álgebra 1. OPERATORIA ALGEBRAICA 1.1 TÉRMINOS SEMEJANTES Se denominan términos semejantes a aquellos que tienen la misma parte literal. Por ejemplo: -2a 2 b y 5a 2 b son

Más detalles

FACTORIZACION FACTORIZACIÓN. Factorizar un número consiste en expresarlo como producto de dos de sus divisores.

FACTORIZACION FACTORIZACIÓN. Factorizar un número consiste en expresarlo como producto de dos de sus divisores. -PA-0 FACTORIZACION V0 Página de 9 NOCION: FACTORIZACIÓN Factorizar un número consiste en epresarlo como producto de dos de sus divisores. Ejemplo: Factoriza 0 en dos de sus divisores :, es decir 0 = Y

Más detalles

CASO I: FACTORIZACION DE BINOMIOS

CASO I: FACTORIZACION DE BINOMIOS CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS ACTIVIDAD ACADEMICA: FUNDAMENTOS MATEMATICOS DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD N : FACTORIZACION

Más detalles

1. dejar a una lado de la igualdad la expresión que contenga una raíz.

1. dejar a una lado de la igualdad la expresión que contenga una raíz. 1. Resuelve las siguientes ecuaciones reales: Solución x 1 + x = 0 ; 3 x = 3 ; ln(x 1) + 4 = ln 3 Ecuaciones con raíces: No todas las ecuaciones de este tipo son sencillas de resolver, pero podemos intentar

Más detalles

martilloatomico@gmail.com

martilloatomico@gmail.com Titulo: ECUACIONES DE PRIMER GRADO CON UNA INCOGNITA Año escolar: 2do.y 3er. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela

Más detalles

POLINOMIOS Y FRACCIONES ALGEBRAICAS

POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS Definición de monomio. Expresión algebraica formada por el producto de un número finito de constantes y variables con exponente natural. Al producto de las constantes

Más detalles

CLASIFICACION DE LAS EXPRESIONES ALGEBRAICAS. Las expresiones algebraicas se clasifican en: a) racionales; b) irracionales.

CLASIFICACION DE LAS EXPRESIONES ALGEBRAICAS. Las expresiones algebraicas se clasifican en: a) racionales; b) irracionales. Capítulo 3.-EXPRESIONES ALGEBRAICAS OBJETIVOS INSTRUCTIVOS Que el alumno: Distinga la clasificación de las expresiones algebraicas. Aprenda las operaciones con monomios y polinomios y sus aplicaciones

Más detalles

El polinomio. es divisible por x + 1, y. Comprobar utilizando el valor numérico, que el polinomio calcula con una división otro factor del polinomio.

El polinomio. es divisible por x + 1, y. Comprobar utilizando el valor numérico, que el polinomio calcula con una división otro factor del polinomio. 1 P() 8 El polinomio es el producto de tres factores, siendo dos de ellos los correspondientes a las raíces =1 = - Halla mediante dos divisiones consecutivas por el método de Ruffini el tercer factor Comprobar

Más detalles

RESUMEN ALGEBRA BÁSICA

RESUMEN ALGEBRA BÁSICA RESUMEN ALGEBRA BÁSICA TERMINO ALGEBRAICO: Es una expresión matemática que consta de un producto (o cociente) de un número con una variable elevado a un exponente (o con varias variables). TÉRMINO ALGEBRAICO

Más detalles

UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES

UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES Temario: Definición de epresiones algebraicas y clasificación. Polinomio, grado. Operaciones. Regla de Ruffini. Factorización de Polinomios.

Más detalles

EJERCICIOS. 7.3 Valor de un polinomio para x = a. Por lo tanto: para determinar expresiones

EJERCICIOS. 7.3 Valor de un polinomio para x = a. Por lo tanto: para determinar expresiones or lo tanto: para determinar epresiones a que sean divisores de un polinomio con coeficientes enteros, se deben asignar valores al número a que dividan al término independiente. Apliquemos este resultado

Más detalles

UNIDAD 10: ECUACIONES DE SEGUNDO GRADO.

UNIDAD 10: ECUACIONES DE SEGUNDO GRADO. UNIDAD 10: ECUACIONES DE SEGUNDO GRADO. 10.1 Estudio elemental de la ecuación de segundo grado. Expresión general. 10.2 Resolución de ecuaciones de segundo grado completas e incompletas. 10.3 Planteamiento

Más detalles

Desarrollo Algebraico

Desarrollo Algebraico Capítulo 4 Desarrollo Algebraico E n el presente capítulo aprenderás técnicas para simplificar expresiones algebraicas, reduciendo la mayor cantidad de términos de cada expresión para lograr una apariencia

Más detalles

APUNTES DE MATEMÁTICAS CURSO PROPEDÉUTICO

APUNTES DE MATEMÁTICAS CURSO PROPEDÉUTICO APUNTES DE MATEMÁTICAS CURSO PROPEDÉUTICO Ing. Cecilia Vargas Velasco Ing. Enrique Márquez Rivas Ing. Julio Meléndez Pulido Periodo: 011-1 Primera edición. 011 Ingeniería Electrónica Ingeniería en Sistemas

Más detalles

ECUACIONES POLINÓMICAS CON UNA INCÓGNITA

ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Las ecuaciones polinómicas son aquellas equivalentes a una ecuación cuyo primer

Más detalles

Los números naturales están ordenados, lo que nos permite comparar dos números naturales:

Los números naturales están ordenados, lo que nos permite comparar dos números naturales: LOS NUMEROS NATURALES. El conjunto de los números naturales está formado por: N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,...} Con los números naturales contamos los elementos de un conjunto (número cardinal). O

Más detalles

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a)

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a) Tema 2: Ecuaciones, Sistemas e Inecuaciones. 2.1 División de polinomios. Regla de Ruffini. Polinomio: Expresión algebraica formada por la suma y/o resta de varios monomios. Terminología: o Grado del polinomio:

Más detalles

Unidad Educativa Caranavi Bolivia MÓDULO 4 ALGEBRA. (Cuarto Bimestre)

Unidad Educativa Caranavi Bolivia MÓDULO 4 ALGEBRA. (Cuarto Bimestre) Unidad Educativa Caranavi Bolivia MÓDULO 4 ALGEBRA (Cuarto Bimestre) Caranavi, La Paz, Bolivia 2016 1 MÓDULO: ALGEBRA 1. DATOS INFORMATIVOS: 2. NOMBRE DE LA U. E. : Caranavi Bolivia 3. DIRECTOR : Lic.

Más detalles

Apuntes de matemáticas 2º ESO Curso 2013-2014. Lenguaje algebraico.

Apuntes de matemáticas 2º ESO Curso 2013-2014. Lenguaje algebraico. Lenguaje algebraico. Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas

Más detalles

4) Si el menor de los ángulos agudos de un triángulo rectángulo mide la cuarta parte del otro ángulo agudo Cuál es la medida de cada uno de ellos?

4) Si el menor de los ángulos agudos de un triángulo rectángulo mide la cuarta parte del otro ángulo agudo Cuál es la medida de cada uno de ellos? ) La suma de los dígitos de un número de cifras es. Si las cifras del número se invierten, el número resultante es 9 unidades menor que el número original. Cuál es el número original? ) El gerente de un

Más detalles

Qué son los monomios?

Qué son los monomios? Qué son los monomios? Recordemos qué es una expresión algebraica. Definición Una expresión algebraica es aquella en la que se utilizan letras, números y signos de operaciones. Si se observan las siguientes

Más detalles

INTERVALOS Y SEMIRRECTAS.

INTERVALOS Y SEMIRRECTAS. el blog de mate de aida CSI: Inecuaciones pág 1 INTERVALOS Y SEMIRRECTAS La ordenación de números permite definir algunos conjuntos de números que tienen una representación geométrica en la recta real

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones algebraicas: bac,

Más detalles

Centro Regional Universitario De Bocas del Toro

Centro Regional Universitario De Bocas del Toro Centro Regional Universitario De Bocas del Toro Nociones Fundamentales del Álgebra El Álgebra es una rama de la matemática que se ocupa de las cantidades más generales y para representarla utiliza letras,

Más detalles

La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes.

La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes. Suma de monomios Sólo podemos sumar monomios semejantes. La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes. ax n + bx n = (a + b)x

Más detalles

PROBLEMAS RESUELTOS. CASO I cuando todos los términos de un polinomio tienen un factor común. Algebra Baldor

PROBLEMAS RESUELTOS. CASO I cuando todos los términos de un polinomio tienen un factor común. Algebra Baldor PROBLEMAS RESUELTOS CASO I cuando todos los términos de un polinomio tienen un factor común CASO II factor comun por agrupación de terminos CASO III trinomio cuadrado perfecto CASO IV Diferencia de cuadrados

Más detalles

Tema 6 Lenguaje Algebraico. Ecuaciones

Tema 6 Lenguaje Algebraico. Ecuaciones Tema 6 Lenguaje Algebraico. Ecuaciones 1. El álgebra El álgebra es una rama de las matemáticas que emplea números y letras con las operaciones aritméticas de sumar, restar, multiplicar, dividir, potencias

Más detalles

Representación Gráfica (recta numérica)

Representación Gráfica (recta numérica) NÚMEROS NATURALES ( N ) Representación Gráfica (recta numérica) 0 1 2 3 4 R Mediante un punto negro representamos el 1, el 3 y el 4 NÚMEROS ENTEROS ( Z ) - 2-1 0 1 2 R Mediante un punto negro representamos

Más detalles

1. Polinomios. 2. Ecuaciones de segundo grado. 3. Soluciones de una ecuación de segundo. grado. Problemas. 4. Sistemas de ecuaciones

1. Polinomios. 2. Ecuaciones de segundo grado. 3. Soluciones de una ecuación de segundo. grado. Problemas. 4. Sistemas de ecuaciones 1. Polinomios 1.1. Suma y resta de polinomios 1.2. Producto de polinomios 1.3. División de polinomios. Regla de Ruffini 1.4. Factorización de polinomios 2. Ecuaciones de segundo grado 2.1. Ecuaciones completas

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas º ESO 1. Expresiones algebraicas En matemáticas es muy común utilizar letras para expresar un resultado general. Por ejemplo, el área de un b h triángulo es base por altura dividido por dos y se expresa

Más detalles

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA CASOS DE FACTORIZACIÓN El futuro tiene muchos nombres. Para los débiles es lo inalcanzable. Para los temerosos, lo desconocido.

Más detalles

Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2

Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2 Podemos definir a las ecuaciones como una igualdad entre expresiones algebraicas (encadenamiento de números y letras ligados por operaciones matemáticas diversas),en la que intervienen una o más letras,

Más detalles
Sitemap