Al término de esta lección podrás: Conocer los productos notables más comunes. Reducir expresiones por medio de la factorización.


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Al término de esta lección podrás: Conocer los productos notables más comunes. Reducir expresiones por medio de la factorización."

Transcripción

1 04 Álgebra I Al término de esta lección podrás: Entender el origen del algebra en su utilidad en el desarrollo de problemas Desarrollar ejercicios de mayor complejidad usando estrategias que Álgebra nos entrega Entender la simbología y poder formular enunciados algebraicos Realizar la operaciones básicas entre los términos algebraicos Conocer los productos notables más comunes Reducir expresiones por medio de la factorización. Video Demostración de la factorización de la diferencia de cuadrados. Factorización de un trinomio sin cuadrado perfecto Factorización por término en común 1. Introducción al Álgebra. La palabra álgebra deriva del nombre del libro Alyebr-mugabala escrito en el año 825 D.C. por el matemático y astrónomo musulmán Mohamed ibn al-jwarizni. El álgebra es la rama de la matemática que estudia estructuras, relaciones y cantidades de un modo más general que la aritmética, pues utiliza letras o símbolos que pueden tomar cualquier valor para desarrollar distintos tipos de problemas que pueden tener múltiples y cambiantes factores que intervengan. La aritmética, no es capaz de generalizar las relaciones matemáticas, como por ejemplo el teorema de Pitágoras, que dice que en un triángulo rectángulo el área del cuadrado de lado la hipotenusa es igual a la suma de las áreas de los cuadrados de lado los catetos. La aritmética sólo da casos particulares de esta relación (por ejemplo, 3, 4 y 5, ya que = 5 2 ). El álgebra, por el contrario, puede dar una generalización que cumple las condiciones del teorema: a 2 + b 2 = c 2. Un número multiplicado por sí mismo se denomina cuadrado, y se representa con el superíndice 2. Por ejemplo, la notación de 3 3 es 3 2 ; de la misma manera, a a es igual que a 2. Lección 4 1

2 El álgebra clásica, que se ocupa de resolver ecuaciones, utiliza símbolos en vez de números específicos y operaciones aritméticas para determinar cómo usar dichos símbolos. El álgebra moderna ha evolucionado desde el álgebra clásica al poner más atención en las estructuras matemáticas. Los matemáticos consideran al álgebra moderna como un conjunto de objetos con reglas que los conectan o relacionan. Así, en su forma más general, una buena definición de álgebra es la que dice que el álgebra es el idioma de las matemáticas. 1.1 Signos del Álgebra. En la escritura algebraica generalmente se representa a cantidades que nos son conocidas por las primeras letras del alfabeto (a, b, c, d, e ), y para representar las cantidades que nos son desconocidas se utiliza las últimas letras del alfabeto ( v, w, x, y, z). Para unir éstas cantidades utilizamos signos de operación, de relación y de agrupación que hemos estudiado anteriormente, estos son: Signos de operación: a + b a más b a b a menos b a b a multiplicado por b (o simplemente, a por b) a b (o a/b) a dividido por b a b a elevado a b b a la raíz b-ésima de a. Signos de relación: = igual a > Mayor que < Menor que. Signos de agrupación: paréntesis según orden. () {} [ ] 1.2 Lenguaje Algebraico. Para poder trabajar con el álgebra es necesario manejar la equivalencia entre el lenguaje común o cotidiano con el lenguaje algebraico. A continuación haremos un paralelo entre los dos lenguajes, para así poder aplicarlo en el planteamiento de problemas. Lenguaje Algebraico Lenguaje Cotidiano + Más, suma, adición, añadir, aumentar, incrementar - Menos, diferencia, disminuido, exceso, excedente, restar De, del, veces, producto, por, factor División, cociente, razón, es a Lección 4 2

3 = Igual a, es, da, resulta, se obtiene, equivale a x x + 1 x - 1 2x Un número cualquiera (casi siempre incógnita) Sucesor de un número cualquiera Antecesor de un número cualquiera Doble de un número, duplo, dos veces, número par, múltiplo de dos 3x Triple de un número, triplo, tres veces, múltiplo de 3 4x x 2 x 3 Cuádruplo de un número Cuadrado de un número Cubo de un número Mitad de un número, un medio de un número Tercera parte de un número, un tercio de un número Inverso multiplicativo de un número 2x + 1 ó 2x - 1 Número impar Semi-suma de dos números, mitad de la suma de dos números Semi-diferencia de dos números, la mitad de la diferencia x, x + 1, x + 2, x + 3, Números consecutivos 2x, 2x + 2, 2x + 4, Números pares consecutivos 2x + 1, 2x + 3, 2x + 5, Números impares consecutivos 4x, 4x + 4, 4x + 8, 4x + 12, Múltiplos consecutivos de 4 5x, 5x + 5, 5x + 10, Múltiplos consecutivos de 5 10x + y Un número de dos cifras, Número de dos dígitos 100x + 10y + z Un número de tres cifras, Número de tres dígitos -x Inverso aditivo de un número (x + y) 2 Cuadrado de la suma de dos números Lección 4 3

4 Escribir en lenguaje común las siguientes expresiones algebraicas: Ejercicio 1 Escribir en lenguaje algebraico las siguientes expresiones en lenguaje común: Ejercicio 2 1. El doble de un número disminuido en el triple de otro número 2. Un número aumentado en su mitad 3. El exceso de número sobre tres 4. El cuádruple del exceso de un número sobre ocho 5. El exceso del quíntuplo de un número sobre diez 6. El doble del cubo de un número 7. El cubo del cuádruple de un número 8. La diferencia entre la cuarta parte del cubo de un número y la tercera parte del cuadrado de otro número 9. La mitad del exceso del cuadrado del triple de un número sobre el doble del cubo de otro número 10. La suma de dos múltiplos consecutivos cualesquiera de ocho Es la representación de una o más operaciones algebraicas. Ejemplos: Término Es una expresión algebraica formada por varios símbolos no separados entre sí por (+) ó ( ) Ejemplos: Cada una de estas expresiones es un término. Los elementos de un término son el signo, el coeficiente numérico, la parte literal, y el grado. Por ejemplo, el término -2x 3, el signo es (-), el coeficiente numérico es (-2), la parte literal es (x 3 ) y el grado es (3). Lección 4 4

5 Para el término a, el signo es (+), el coeficiente numérico es (1), la parte literal es (a) y el grado es (1). El grado puede ser absoluto o con respecto a una letra. Por ejemplo el término 3x 3 b 5 c 5 tiene un grado absoluto de 13, y respecto a cada letra es 3 para x, 5 para b y 5 para c Clasificación de expresiones algebraicas Monomio: Consta de un solo término Ejemplos: Polinomios: Consta de más de un término Entre los polinomios más usados están: - Binomios: Consta de dos términos - Trinomios: consta de tres términos Ejemplos: :Binomio :Polinomio de 5 términos : Polinomio de 4 términos Términos semejantes Los términos semejantes son aquellos que tiene la misma parte literal. En palabras más simples, presentan la misma letra y el mismo exponente (parte literal y grado). Ejemplo: Estos tres términos son semejantes entre si y pueden, por lo tanto sumarse. El resultado de su suma es 12p. Compruébalo! Atención Una forma fácil de reducir términos es sumar todos los términos iguales por parte, según su parte literal y teniendo en cuenta sus signos Eliminación de los paréntesis. El paréntesis, como habíamos visto anteriormente, es solamente una forma de dar un orden de desarrollo en un problema combinado. En el caso del álgebra, si dentro de un paréntesis tenemos términos no semejantes no existe desarrollo posible, para solucionar esto podemos eliminar el paréntesis según; si éste está siendo multiplicado por otro término (multiplicación algebraica) y/o el signo que lo antecede. Si al paréntesis lo antecede un signo positivo (+), ponemos este y todos los términos quedan Igual (multiplicas cada término del paréntesis por 1), no sucede lo mismo con el signo negativo ( ), ya que este invierte todos los signos de los términos del paréntesis (ósea multiplicas cada termino del paréntesis por -1). Ejemplos: -(a - b) = -1 (a + b) = -a + b (a b) = 1 (a b) = a + b Lección 4 5

6 Resuelve reduciendo los términos semejantes y eliminando los paréntesis: Ejercicio Productos Algebraicos Multiplicación de monomios Se multiplican los coeficientes numéricos entre sí normalmente. Para la parte literal, la multiplicación queda expresada al unir los distintos símbolos literarios (letras) entre sí sin símbolo de multiplicación entre ellos. Si los símbolos literarios son iguales se le coloca un exponente con el valor de tantos símbolos literarios iguales se multiplicaron, si estos ya tiene exponentes simplemente se suman. Al final se ordenan los coeficientes literales en orden alfabético. Los denominadores de las fracciones se multiplican de la misma forma hacia el lado. Una forma de comprobar si el resultado esta correcto, es sumar los grados absolutos de cada término. El resultado tiene que tener un grado absoluto igual a esa suma. Ejemplos: Multiplica los siguientes monomios: Ejercicio 4 Lección 4 6

7 1.4.2 Multiplicación de un monomio por un polinomio Se multiplica el monomio por cada término del polinomio usando los pasos mencionados anteriormente. Ejemplo: 4 Atención Al multiplicar términos semejantes, recuerda que tienes que sumar sus exponentes y trata al final de reducir los términos semejantes. Multiplica los siguientes monomios por polinomios: Ejercicio Multiplicación de un polinomio por un polinomio Para multiplicar tomamos el primer término del primer polinomio y lo multiplicamos con el segundo polinomio (de la misma forma que la multiplicación de un monomio por un polinomio), luego tomamos el segundo término del primer polinomio y lo multiplicamos con el segundo polinomio, y así continuamos sucesivamente hasta terminar con todos los términos del primer polinomio. Ejemplos: Lección 4 7

8 Multiplica los siguientes polinomios: Ejercicio 6 WWW Expresiones Algebraicas: Álgebra: Lección 4 8

9 Resumen: 1.5- Desarrollo Algebraico. En esta lección aprenderás técnicas para simplificar expresiones algebraicas, reduciendo la mayor cantidad de términos de cada expresión para lograr una apariencia más agradable y breve, esto es lo que conocemos como factorización y reducción de las expresiones algebraicas para un desarrollo más fácil de los ejercicios. Existen muchos métodos distintos para lograr estos objetivos, pero sin duda que para todos ellos te será de mucha utilidad conocer los llamados Productos Notables, que nos permitirán simplificar enormemente nuestro trabajo Productos Notables. Se llaman productos notables a los resultados de una multiplicación que tiene características particulares y reconocibles, que son útiles en el desarrollo de expresiones algebraicas. Estos son: -La suma por la diferencia de dos términos. Primer término al cuadrado menos el segundo término al cuadrado. -Cuadrado de Binomio: Es el 1er término al cuadrado (+) ó ( ) el doble producto del 1er término por el 2do término (+) el 2do término al cuadrado. En forma generalizada se escribe así: Puedes comprobar está relación multiplicando al termino (a ± b) por si mismo usando las propiedades de multiplicación de binomios vistos en la lección anterior. Lo importante de conocer estas relaciones es que tú puedes reconocerlas en un ejercicio y raídamente factorizarlas para reducir y desarrollar los ejercicios. Recuerda que la velocidad es una de las cosas importante en el desarrollo de los ensayos -Cubo de un Binomio Es el 1er término al cubo (+) ó ( ) el triple producto del 1ero al cuadrado por el segundo (+) el triple producto del 1ero por el 2do al cuadrado (+) ó ( ) el 2do término al cubo. Lección 4 9

10 La forma generalizada se denomina binomio elevado a un exponente natural, Esto se escribe: Con esto podemos desarrollar cualquier potencia de un binomio. En la fórmula anterior existe una relación interesante de conocer en cada uno de sus términos, notemos que en el primer término aparece x n, en el segundo x n 1 en el tercero x n 2, en el m ésimo término x n (m 1) es decir x va disminuyendo su potencia partiendo desde n hasta llegar a 0 en el último término, en el caso de y ocurre absolutamente lo contrario, la potencia parte de 0 en el primer término hasta llegar a n en el último. De ésta manera obtendremos fácilmente los coeficientes literales de ésta expresión, sin embargo los coeficientes numéricos {a 0, a 1, a 2, a n } vienen determinados por una estructura conocida como el Triangulo de Pascal, que vemos a continuación: La manera de obtener éste triángulo es partir de las dos primeras filas, y de ahí en adelante sumar hacia abajo los coeficientes para obtener la fila que continúa. Observa que en la tercera y la cuarta fila aparecen los coeficientes del cuadrado y del cubo de binomio respectivamente, cuando n = 2 y n = 3. De ésta manera podemos obtener (conociendo la fila que corresponde en el triangulo de Pascal), cualquier potencia de un binomio. Ejemplo: Encontremos la expresión expandida de (a b) 5 Respuesta: los coeficientes que le corresponden son los de la sexta fila del triángulo de Pascal (mirar mas arriba), pues n = 5, entonces el primer paso es: Lección 4 10

11 Ahora ponemos los términos a y b con las potencias respectivas. Pueden observar cómo van disminuyendo los exponentes del primer término y aumentado los del segundo. -Multiplicación de dos binomios con un sólo término en común Es el término en común al cuadrado más (+) la suma de los término distintos por el término en común más (+) el producto entre los términos distintos. Para evitar confusiones hablaremos de suma para la operación, pero tomando el cuenta el signo de los términos. Ejemplo: Ejercicio Trinomio al cuadrado El 1er término al cuadrado mas el 2do al cuadrado mas el 3er al cuadrado, más la suma de las combinaciones de multiplicación entre dos de ellos. Lección 4 11

12 1.5.2 Factorización. Al factorizar buscamos dos o más factores cuyo producto sea igual a la expresión que queremos obtener. No todos los polinomios se pueden factorizar, ya que hay algunos que solo son divisibles por sí mismo y por 1, como por ejemplo: x + y. Pero hay que tener ojo ya que este polinomio no es divisible en los reales R (que es donde estamos trabajando), esto no significa que no se pueda factorizar en otro conjunto numérico mayor, por ejemplo x + y si se puede factorizar en los complejos C, quedando: ( x + yi)( x yi). Por ahora solo trabajaremos en los reales R. Cuando vimos el capítulo de los números, revisamos la propiedad distributiva, para este caso, la factorización es la propiedad de distributiva inversa Factor común - Monomio común Al existir un coeficiente literario y/o numérico común entre los térmicos de la expresión, podemos escribirlos como la multiplicación de ese(os) coeficiente(s) por la suma de los términos. - Polinomio común Al igual que el monomio en común, el polinomio en común multiplica a cada término. Si es complicado de visualizar podemos reemplazar en el primer ejemplo, (a + b) = c Quedando xc + mc = (x + m)c. - Factor común por agrupación de términos Este caso es sólo una combinación de los dos casos anteriores. Lección 4 12

13 En el primer ejemplo, factorizamos por separados los coeficientes comunes x e y, luego nos percatamos que existe un binomio en común, por lo que factorizamos por esta expresión Factorización de trinomios - Trinomio Cuadrado Perfecto Para factorizar un trinomio cuadrado perfecto, primero tenemos que ordenar el trinomio dejando a los extremos los cuadrados perfectos. Esto es solamente utilizar el producto notable, cuadrado de binomio, a la inversa. Ejemplo: - Trinomio de la forma (ax 2 + mx + n) Utilizando el producto notable Multiplicación de dos binomios con un sólo término en común podemos factorizar estos trinomios. En donde: m = (a + b) y c = (a b) Ejemplo: Tomemos el trinomio 6x 2 7x 3, ya ordenado amplificaremos por el coeficiente que acompaña a x 2, que en este caso es 6 quedando: Ahora buscamos dos números que multiplicados den 18 y sumados 7, estos son 9 y 2. Como anteriormente amplificamos la expresión por 6 ahora hay que dividir por 6, para que quede igual: Lección 4 13

14 1.5.5 Factorización de cubos Cubo perfecto de Binomio Tenemos que ordenar la expresión con respecto a una letra. Y debe cumplir con las siguientes condiciones: 1. Debe tener cuatro términos 2. El 1ero y el último término deben ser cubos perfectos 3. El 2do término del trinomio sea más ó menos el triple del 1ero del binomio al cuadrado por el 2do término del binomio. 4. Y que el 3er término del trinomio sea el triple del 1ero término del binomio por el 2do término del binomio al cuadrado. Tomemos x 9x 2 +x 3 ordenado queda: x 3 9x x 27. Tiene cuatro términos y factorizado lo escribimos (x 3) 3. La raíz cúbica de x 3 es x y la de 27 es 3, además 3 x 2 3 = -9x 2 el 2do término del trinomio y 3 x (3) 2 = 27x el 3er término del trinomio. -Suma y Diferencia de cubos perfectos Lección 4 14

15 1.5.6 Diferencia de cuadrados perfectos Usando el producto notable de suma por su diferencia, podemos factorizar diferencia de cuadrados perfectos. Ya que la raíz de a 2 es a y la raíz de b 2 es b Completar cuadrados de binomio Tomemos y 2 8y Digamos que y 2 y 8y son parte de un cuadrado perfecto. Luego nos faltaría el último término que es el cuadrado de la mitad del coeficiente que acompaña a y, que es 16 [(8/2) 2 = 4 2 = 16]. Sumemos y restemos este último término, para no modificar la expresión (sumar 0). Arreglando los términos convenientemente llegamos a la diferencia de dos cuadrados perfectos. Si reemplazamos (y 4) = c, podemos darnos cuenta que la expresión (y 4) 2 1 = c 2 1, es la diferencia de cuadrados perfectos, que podemos factorizar como la suma por la diferencia de las raíces (c + 1) (c 1) = [(y 4) + 1] [(y 4) 1]. De manera más general (Traten de entenderlo): Lección 4 15

16 Factorizar los siguientes enunciados. Ejercicio 1.6 -Fracciones Algebraicas. Son fracciones, en las cuales numerador o denominador (o ambas) son expresiones algebraicas. La operatoria con fracciones algebraicas es análoga a la operatoria con fracciones en los reales, sólo con el cuidado de factorizar adecuadamente. Algunos ejemplos, a continuación: Ejemplo: Solución: 6ab Reducir al máximo la fracción 2 2 6a b 6ab 6ab 6ab 1 2 6a b 2 6ab 6ab a b a b Ejemplo: Solución: 5ab 3b Determine el valor de 2 6x 8x Como el MCM de 2 6x y 8x es 2 24x, entonces se tiene que: 5ab 3b 30ab 3bx 3b 10a x b 10a x x 8x 24x 24x 8x Ejemplo: Solución: a b 6a Determine el valor de 8 2a 2b a b 6a a b 6a 8 2a 2b 8 2 a b 3a 8 Lección 4 16

17 Ingresa al Campus Virtual para hacer consultas e interactuar con tus compañeros de curso. Comparte con tus amigos este material, invitándolos a inscribirse gratuitamente en Lección 4 17

Introducción al Álgebra

Introducción al Álgebra Capítulo 3 Introducción al Álgebra L a palabra álgebra deriva del nombre del libro Al-jebr Al-muqābāla escrito en el año 825 D.C. por el matemático y astrónomo musulman Mohamad ibn Mūsa Al-Khwārizmī. El

Más detalles

Desarrollo Algebraico

Desarrollo Algebraico Capítulo 4 Desarrollo Algebraico E n el presente capítulo aprenderás técnicas para simplificar expresiones algebraicas, reduciendo la mayor cantidad de términos de cada expresión para lograr una apariencia

Más detalles

UNIDAD DE APRENDIZAJE I

UNIDAD DE APRENDIZAJE I UNIDAD DE APRENDIZAJE I Saberes procedimentales Interpreta y utiliza correctamente el lenguaje simbólico para el manejo de expresiones algebraicas. 2. Identifica operaciones básicas con expresiones algebraicas.

Más detalles

MATEMÁTICAS ÁLGEBRA (TIC)

MATEMÁTICAS ÁLGEBRA (TIC) COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS ÁLGEBRA (TIC) GRADO:8 O A, B DOCENTE: Nubia E. Niño C. FECHA: 23 / 02 / 15 GUÍA UNIFICADA: # 1 5; # 1-6 y 1-7 DESEMPEÑOS:

Más detalles

Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios.

Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios. Productos notables Sabemos que se llama producto al resultado de una multiplicación. También sabemos que los valores que se multiplican se llaman factores. Se llama productos notables a ciertas expresiones

Más detalles

2. EXPRESIONES ALGEBRAICAS

2. EXPRESIONES ALGEBRAICAS 2. EXPRESIONES ALGEBRAICAS Tales como, 2X 2 3X + 4 ax + b Se obtienen a partir de variables como X, Y y Z, constantes como -2, 3, a, b, c, d y cobinadas utilizando la suma, resta, multiplicación, división

Más detalles

LICEO Nº1 JAVIERA CARRERA 2012 MATEMATICA Benjamín Rojas F. FACTORIZACIÓN

LICEO Nº1 JAVIERA CARRERA 2012 MATEMATICA Benjamín Rojas F. FACTORIZACIÓN LICEO Nº1 JAVIERA CARRERA 2012 MATEMATICA Benjamín Rojas F. FACTORIZACIÓN Factorizar es transformar un número o una expresión algebraica en un producto. Ejemplos: Transformar en un producto el número 6

Más detalles

UNIDAD DOS FACTORIZACIÓN

UNIDAD DOS FACTORIZACIÓN UNIDAD DOS FACTORIZACIÓN Factorizar quiere decir descomponer en factores, los factores son divisores de una expresión que, multiplicados entre sí, dan como resultado la primera expresión. FACTOR COMÚN

Más detalles

Curso º ESO. UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón

Curso º ESO. UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón 2º ESO UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón OBJETIVOS CONTENIDOS PROCEDIMIENTOS Lenguaje algebraico. Normas y Traducción

Más detalles

MONOMIOS Y POLINOMIOS

MONOMIOS Y POLINOMIOS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas y se representan por letras.

Más detalles

LOS NUMEROS IRRACIONALES Y SU REPRESENTACIÓN EN LA RECTA NUMERICA

LOS NUMEROS IRRACIONALES Y SU REPRESENTACIÓN EN LA RECTA NUMERICA GUIA Nº 1: LOS NÚMEROS REALES 1 GRADO: 8º PROFESORA: Eblin Martínez M. ESTUDIANTE: PERIODO: I DURACIÓN: 20 Hrs LOGRO: Realizo operaciones con números naturales, enteros, racionales e irracionales. INDICADORES

Más detalles

Guía de Aprendizaje n 7 Plan Biólogo II 2011 LENGUAJE ALGEBRAICO

Guía de Aprendizaje n 7 Plan Biólogo II 2011 LENGUAJE ALGEBRAICO Fuente: Universidad Católica de Chile Guía de Aprendizaje n 7 Plan Biólogo II 2011 LENGUAJE ALGEBRAICO 1. Las letras en Matemática Así como para expresarnos utilizamos el Español, en Matemática se utiliza

Más detalles

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma. FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto

Más detalles

Mó duló 04: Á lgebra Elemental I

Mó duló 04: Á lgebra Elemental I INTERNADO MATEMÁTICA 016 Guía para el Estudiante Mó duló 04: Á lgebra Elemental I Objetivo: Identificar y utilizar conceptos matemáticos asociados al estudio del álgebra elemental. Problema 1 La edad de

Más detalles

Expresiones algebraicas

Expresiones algebraicas Epresiones algebraicas Matemáticas I 1 Epresiones algebraicas Epresiones algebraicas. Monomios y polinomios. Monomios y polinomios. Una epresión algebraica es una combinación de letras, números y signos

Más detalles

1. OPERATORIA ALGEBRAICA 1.1 TÉRMINOS SEMEJANTES

1. OPERATORIA ALGEBRAICA 1.1 TÉRMINOS SEMEJANTES MATEMÁTICA MÓDULO 1 Eje temático: Álgebra 1. OPERATORIA ALGEBRAICA 1.1 TÉRMINOS SEMEJANTES Se denominan términos semejantes a aquellos que tienen la misma parte literal. Por ejemplo: -2a 2 b y 5a 2 b son

Más detalles

EL LENGUAJE ALGEBRAICO

EL LENGUAJE ALGEBRAICO LENGUAJE ALGEBRAICO Guillermo Ruiz Varela - PT EL LENGUAJE ALGEBRAICO Hasta ahora siempre hemos trabajado en matemáticas con números y signos, es lo que se llama lenguaje numérico. A partir de ahora, vamos

Más detalles

GUIA ALGEBRA PARTE I. Ejercicios básicos de aritmética EJERCICIOS

GUIA ALGEBRA PARTE I. Ejercicios básicos de aritmética EJERCICIOS 1 GUIA ALGEBRA PARTE I Ejercicios básicos de aritmética QUEBRADOS Fracciones mixtas ejemplo 3 4/5 Una fracción mixta es un número entero y una fracción combinados, como 1 3 / 4. Fracciones propias ejemplo

Más detalles

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las

Más detalles

Guía Nº 1(B) ALGEBRA

Guía Nº 1(B) ALGEBRA Liceo Industrial Benjamín Dávila Larraín Unidad Técnica Pedagógica Guía Nº (B) ALGEBRA I. Identificación Docente Verónica Moya R. Claudia Paez Subsector/Módulo Matemática Email docente Aprendizaje Esperado

Más detalles

; En este término algebraico, tenemos que 3 es el factor numérico y el coeficiente literal.

; En este término algebraico, tenemos que 3 es el factor numérico y el coeficiente literal. Álgebra Término algebraico: es el producto y/o división de una o más variables (factor literal) y un coeficiente o factor numérico. Por ejemplo: el cálculo del área de un triángulo la rapidez media ; En

Más detalles

Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto

Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto En esta unidad vas a comenzar el estudio del álgebra, el lenguaje de las matemáticas. Vas a aprender

Más detalles

LA FACTORIZACIÓN COMO HERRAMIENTA PARA LA SIMPLIFICACIÓN DE EXPRESIONES ALGEBRAICAS.

LA FACTORIZACIÓN COMO HERRAMIENTA PARA LA SIMPLIFICACIÓN DE EXPRESIONES ALGEBRAICAS. LA FACTORIZACIÓN COMO HERRAMIENTA PARA LA SIMPLIFICACIÓN DE EXPRESIONES ALGEBRAICAS. Material adaptado con fines instruccionales por Teresa Gómez, de: Ochoa, A., González N., Lorenzo J. y Gómez T. (008)

Más detalles

RESUMEN ALGEBRA BÁSICA

RESUMEN ALGEBRA BÁSICA RESUMEN ALGEBRA BÁSICA TERMINO ALGEBRAICO: Es una expresión matemática que consta de un producto (o cociente) de un número con una variable elevado a un exponente (o con varias variables). TÉRMINO ALGEBRAICO

Más detalles

cómo expresarías?. ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: POLINOMIOS Grupo: 3º A Expresiones algebraicas Álgebra vs Aritmética

cómo expresarías?. ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: POLINOMIOS Grupo: 3º A Expresiones algebraicas Álgebra vs Aritmética 16/01/01 ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: POLINOMIOS Grupo: º A cómo expresarías?. La altura de mi hermano si te digo que mide 10 cm más que mi hermana: El perímetro de un triángulo

Más detalles

Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales Ejercicios Orden y valor absoluto...

Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales Ejercicios Orden y valor absoluto... ÍNDICE Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales... 3 Ejercicios... 5 Orden y valor absoluto... 6 Ejercicios... 7 Suma de números reales... 9 Reglas

Más detalles

RESUMEN DE CONCEPTOS

RESUMEN DE CONCEPTOS RESUMEN DE CONCEPTOS 1º ESO MATEMÁTICAS NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número exacto de veces. Ejemplo: 16 es múltiplo

Más detalles

TEMA 4: EXPRESIONES ALGEBRAICAS.

TEMA 4: EXPRESIONES ALGEBRAICAS. TEMA 4: EXPRESIONES ALGEBRAICAS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. CURSO 2011-2012 Página 1 de 14 Profesor: Manuel González de León Curso

Más detalles

MATE IV Serie Álgebra 2015/01/26 NOMENCLATURA ALGEBRAICA

MATE IV Serie Álgebra 2015/01/26 NOMENCLATURA ALGEBRAICA NOMENCLATURA ALGEBRAICA Definición (Término). Es una expresión algebraica que consta de un solo símbolo o de varios símbolos no separados entre sí por el signo + o -. Por ejemplo a, 3b, xy, son términos.

Más detalles

UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN CURSO PROPEDEÚTICO ÁREA: MATEMÁTICAS

UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN CURSO PROPEDEÚTICO ÁREA: MATEMÁTICAS UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN CURSO PROPEDEÚTICO ÁREA: MATEMÁTICAS TEMA 1. ÁLGEBRA Parte de las Matemáticas que se dedica en sus aspectos más elementales. A

Más detalles

Eje temático: Álgebra y funciones Contenidos: Raíces cuadradas y cúbicas - Racionalización Ecuaciones irracionales. Nivel: 3 Medio

Eje temático: Álgebra y funciones Contenidos: Raíces cuadradas y cúbicas - Racionalización Ecuaciones irracionales. Nivel: 3 Medio Eje temático: Álgebra y funciones Contenidos: Raíces cuadradas y cúbicas - Racionalización Ecuaciones irracionales. Nivel: 3 Medio Raíces 1. Raíces cuadradas y cúbicas Comencemos el estudio de las raíces

Más detalles

Centro Regional Universitario De Bocas del Toro

Centro Regional Universitario De Bocas del Toro Centro Regional Universitario De Bocas del Toro Nociones Fundamentales del Álgebra El Álgebra es una rama de la matemática que se ocupa de las cantidades más generales y para representarla utiliza letras,

Más detalles

La asignatura de Matemática estimula el desarrollo de diversas habilidades:

La asignatura de Matemática estimula el desarrollo de diversas habilidades: La asignatura de Matemática estimula el desarrollo de diversas habilidades: Intelectuales, como: El razonamiento lógico y flexible, la imaginación, la inteligencia espacial, el cálculo mental, la creatividad,

Más detalles

UNIDAD 5: ÁLGEBRA. Nacho Jiménez ANT ÍNDICE SIG

UNIDAD 5: ÁLGEBRA. Nacho Jiménez ANT ÍNDICE SIG UNIDAD 5: ÁLGEBRA Nacho Jiménez 0. Conceptos previos ÍNDICE 1. Para qué sirve el álgebra? 2. Expresiones algebraicas 2.1 Monomios 2.2 Suma y resta de monomios 2.3 Multiplicación de monomios 2.4 División

Más detalles

APUNTES DE FUNDAMENTOS DE MATEMATICA. CASO I: Cuando todos los términos de un polinomio tienen un factor común.

APUNTES DE FUNDAMENTOS DE MATEMATICA. CASO I: Cuando todos los términos de un polinomio tienen un factor común. FACTORIZACION DE POLINOMIOS. CASO I: Cuando todos los términos de un polinomio tienen un factor común. Cuando se tiene una expresión de dos o más términos algebraicos y si se presenta algún término común,

Más detalles

Preparación para Álgebra 1 de Escuela Superior

Preparación para Álgebra 1 de Escuela Superior Preparación para Álgebra 1 de Escuela Superior Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales

Más detalles

Preparación para Álgebra universitaria con trigonometría

Preparación para Álgebra universitaria con trigonometría Preparación para Álgebra universitaria con trigonometría Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares.

Más detalles

Alumno Fecha Actividad 13 Expresiones algebraicas 1º ESO

Alumno Fecha Actividad 13 Expresiones algebraicas 1º ESO Alumno Fecha Actividad 1 Expresiones algebraicas 1º ESO Las expresiones que resultan de combinar números y letras relacionándolos con las operaciones habituales se llaman expresiones algebraicas y se utilizan

Más detalles

Uniboyacá GUÍA DE APRENDIZAJE NO 7. Psicología e Ingeniería Ambiental

Uniboyacá GUÍA DE APRENDIZAJE NO 7. Psicología e Ingeniería Ambiental Uniboyacá GUÍA DE APRENDIZAJE NO 7 1. IDENTIFICACIÓN Programa académico Psicología e Ingeniería Ambiental Actividad académica o curso Matemáticas básicas Semestre Segundo de 2012 Actividad de aprendizaje

Más detalles

TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19

TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19 TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19 Introducción 19 Lenguaje común y lenguaje algebraico 22 Actividad 1 (Lenguaje común y lenguaje algebraico) 23 Actividad 2 (Lenguaje común y

Más detalles

UNA ECUACIÓN es una igualdad de dos expresiones algebraicas.

UNA ECUACIÓN es una igualdad de dos expresiones algebraicas. UNA EXPRESIÓN ALGEBRAICA es una combinación de números, variables (o símbolos) y operaciones como la suma, resta, multiplicación, división, potenciación y radicación. Ejemplos. UNA ECUACIÓN es una igualdad

Más detalles

UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES

UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES Temario: Definición de epresiones algebraicas y clasificación. Polinomio, grado. Operaciones. Regla de Ruffini. Factorización de Polinomios.

Más detalles

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA. POLINOMIOS Y FRACCIONES ALGEBRAICAS.. Repaso de polinomios - Epresión algebraica. Valor numérico - Polinomios. Operaciones con polinomios.. Identidades notables - Cuadrado de una suma de una diferencia

Más detalles

Tema 3. Polinomios y fracciones algebraicas

Tema 3. Polinomios y fracciones algebraicas Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones.. Operaciones con monomios. Polinomios.. Definiciones.. Operaciones con polinomios. Factorización de un polinomio.. Teorema del resto.

Más detalles

ALGEBRA. Término algebraico Coeficiente numérico Parte literal

ALGEBRA. Término algebraico Coeficiente numérico Parte literal ALGEBRA La importancia del álgebra radica en que constituye el cimiento de casi todas las ramas de la matemática; es una poderosa herramienta para desarrollar el pensamiento analítico. Con la ayuda del

Más detalles

SERIE INTRODUCTORIA. REPASO DE ALGEBRA.

SERIE INTRODUCTORIA. REPASO DE ALGEBRA. SERIE INTRODUCTORIA. REPASO DE ALGEBRA. 1.- REDUCCION DE TÉRMINOS SEMEJANTES. Recuerde que los términos semejantes son aquellos que tienen las mismas letras con los mismos exponentes. Ejemplos: *7m; 5m

Más detalles

COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS. 1º ESO

COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS. 1º ESO COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS. º ESO RELACIÓN 5: ALGEBRA Lenguaje algebraico, monomios polinomios EXPRESIÓN ALGEBRAICA Es un conjunto de números letras

Más detalles

Sesión No. 2. Contextualización. Nombre: Polinomios y expresiones racionales MATEMÁTICAS.

Sesión No. 2. Contextualización. Nombre: Polinomios y expresiones racionales MATEMÁTICAS. Matemáticas 1 Sesión No. 2 Nombre: Polinomios y expresiones racionales Contextualización Los polinomios son expresiones algebraicas que son las de mayor uso y aplicación en cualquiera de las áreas de las

Más detalles

RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO

RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO 2015-2016 UNIDAD 1: NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número

Más detalles

PRINCIPALES CASOS DE FACTORIZACIÓN CASO Características y cuándo aplicarlo Cómo realizar la factorización Ejemplos

PRINCIPALES CASOS DE FACTORIZACIÓN CASO Características y cuándo aplicarlo Cómo realizar la factorización Ejemplos 1 2 4 PRINCIPALES CASOS DE FACTORIZACIÓN CASO Características y cuándo aplicarlo Cómo realizar la factorización Ejemplos Factor Común Factor Común por Agrupación de Términos Diferencia de Cuadrados Perfectos

Más detalles

4) Si el menor de los ángulos agudos de un triángulo rectángulo mide la cuarta parte del otro ángulo agudo Cuál es la medida de cada uno de ellos?

4) Si el menor de los ángulos agudos de un triángulo rectángulo mide la cuarta parte del otro ángulo agudo Cuál es la medida de cada uno de ellos? ) La suma de los dígitos de un número de cifras es. Si las cifras del número se invierten, el número resultante es 9 unidades menor que el número original. Cuál es el número original? ) El gerente de un

Más detalles

Matemáticas. Sesión #2. Polinomios y expresiones racionales.

Matemáticas. Sesión #2. Polinomios y expresiones racionales. Matemáticas Sesión #2. Polinomios y expresiones racionales. Contextualización Los polinomios son expresiones algebraicas que son las de mayor uso y aplicación en cualquiera de las áreas de las matemáticas,

Más detalles

UNIDAD 2. Lenguaje algebraico

UNIDAD 2. Lenguaje algebraico Matemática UNIDAD 2. Lenguaje algebraico 1 Medio GUÍA N 1 Evaluación de Expresiones Algebraicas Conceptos básicos El lenguaje algebraico es una de las principales formas del lenguaje matemático y es mucho

Más detalles

CASO I: FACTORIZACION DE BINOMIOS

CASO I: FACTORIZACION DE BINOMIOS CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS ACTIVIDAD ACADEMICA: FUNDAMENTOS MATEMATICOS DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD N : FACTORIZACION

Más detalles

RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO

RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO OBJETIVO RECONOCER EL GRADO, EL TÉRMINO Y LOS COEICIENTES DE UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma de monomios, que son los términos del polinomio.

Más detalles

UNIDAD DE APRENDIZAJE II

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE II Saberes procedimentales 1. Multiplicar y dividir números enteros y fraccionarios 2. Utilizar las propiedad conmutativas y asociativa Saberes declarativos A Concepto de base, potencia

Más detalles

POLINOMIOS En esta unidad aprenderás a:

POLINOMIOS En esta unidad aprenderás a: POLINOMIOS En esta unidad aprenderás a: Reconocer polinomios y calcular su valor numérico Realizar operaciones con polinomios. Manejar la regla de Ruffini y el teorema del resto para encontrar las raíces

Más detalles

open green road Guía Matemática PRODUCTOS NOTABLES profesor: Nicolás Melgarejo .co

open green road Guía Matemática PRODUCTOS NOTABLES profesor: Nicolás Melgarejo .co Guía Matemática PRODUCTOS NOTABLES profesor: Nicolás Melgarejo.co 1. Introducción Es usual en matemática intentar simplificar todas las expresiones y definiciones, utilizando el mínimo de elementos o símbolos

Más detalles

UNIDAD I FUNDAMENTOS BÁSICOS

UNIDAD I FUNDAMENTOS BÁSICOS República Bolivariana de Venezuela Universidad Alonso de Ojeda Administración Mención Gerencia y Mercadeo UNIDAD I FUNDAMENTOS BÁSICOS Elaborado por: Ing. Ronny Altuve Ciudad Ojeda, Mayo 2016 ÁLGEBRA Es

Más detalles

Nombre del estudiante: Grupo: Hora: Salón:

Nombre del estudiante: Grupo: Hora: Salón: Instituto Tecnológico de Saltillo. Cuadernillo de Ejercicios de Álgebra. CURSO DE NIVELACIÓN DE ÁLGEBRA 2011 Nombre del estudiante: Grupo: Hora: Salón: CONTENIDO DEL CUADERNILLO. UNIDAD NÚMEROS REALES.

Más detalles

Factorización de polinomios FACTORIZACIÓN DE POLINOMIOS

Factorización de polinomios FACTORIZACIÓN DE POLINOMIOS FACTORIZACIÓN DE POLINOMIOS 1. Polinomios Un monomio es el producto de un número real por una o más letras que pueden estar elevadas a exponentes que sean números naturales. La suma de los exponentes de

Más detalles

Una expresión algebraica es una combinación de números y letras combinados mediante las operaciones matemáticas.

Una expresión algebraica es una combinación de números y letras combinados mediante las operaciones matemáticas. TEMA 6 EXPRESIONES ALGEBRAICAS Una expresión algebraica es una combinación de números y letras combinados mediante las operaciones matemáticas. Ejemplo: 2 x, 2 a + 3, m (n - 3),... Usamos las expresiones

Más detalles

Titulo: FACTORIZACION (Descomposición Factorial) Año escolar: 2do: año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo

Más detalles

a) Factoriza el monomio común. En este caso 6 se puede dividir de cada término:

a) Factoriza el monomio común. En este caso 6 se puede dividir de cada término: Materia: Matemática de 5to Tema: Factorización y Resolución de ecuaciones 1) Factorización Marco Teórico Decimos que un polinomio está factorizado completamente cuando no podemos factorizarlo más. He aquí

Más detalles

Guía de Estudios de Algebra

Guía de Estudios de Algebra Guía de Estudios de Algebra Licenciatura en Optometría ALTUZAR INGENERIA Índice Presentación... 3 Propósito... 3 Criterios de Evaluación... 3 Bloque Uno: Fundamentos algebraicos... 4 Propósito... 4 Actividades

Más detalles

Desigualdades con Valor absoluto

Desigualdades con Valor absoluto Resolver una desigualdad significa encontrar los valores para los cuales la incógnita cumple la condición. Para ver ejemplos de las diferentes desigualdades que hay, haga Click sobre el nombre: Desigualdades

Más detalles

MATEMÁTICAS II CC III PARCIAL

MATEMÁTICAS II CC III PARCIAL UNIDAD DIDÁCTICA #3 CONTENIDO ECUACIONES LINEALES CON UNA INCOGNITA TIPOS DE ECUACIONES RESOLUCION DE ECUACIONES LINEALES INECUACIONES LINEALES 1 ECUACIONES LINEALES CON UNA INCOGNITA Una ecuación es una

Más detalles

Contenido: 1. Definición y clasificación. Polinomios.

Contenido: 1. Definición y clasificación. Polinomios. Polinomios. Contenido:. Definición y clasificación.. Operaciones.. Simplificación. 4. Productos notables.. Factorización. 6. Completar cuadrados. 7. Nociones de despeje.. Definición y clasificación Definición.

Más detalles

Tema 6 Lenguaje Algebraico. Ecuaciones

Tema 6 Lenguaje Algebraico. Ecuaciones Tema 6 Lenguaje Algebraico. Ecuaciones 1. El álgebra El álgebra es una rama de las matemáticas que emplea números y letras con las operaciones aritméticas de sumar, restar, multiplicar, dividir, potencias

Más detalles

FACTORIZACIÓN GUÍA CIU NRO:

FACTORIZACIÓN GUÍA CIU NRO: República Bolivariana de Venezuela Ministerio de la Defensa Universidad Nacional Experimental Politécnica de la Fuerza Armada Núcleo Caracas Curso de Inducción Universitaria CIU Cátedra: Razonamiento Matemático

Más detalles

Ecuaciones de primer grado

Ecuaciones de primer grado Matemáticas Unidad 16 Ecuaciones de primer grado Objetivos Resolver problemas que impliquen el planteamiento y la resolución de ecuaciones de primer grado de la forma x + a = b; ax = b; ax + b = c, utilizando

Más detalles

DESARROLLO D) 4. para a = 1 y b = 2 (a 2 + b 2 )(2a 3b 2 ) es:

DESARROLLO D) 4. para a = 1 y b = 2 (a 2 + b 2 )(2a 3b 2 ) es: ENCUENTRO # 10 TEMA:Operaciones con polinomios CONTENIDOS: 1. Multiplicación de polinomios. 2. Productos notables. DESARROLLO Ejercicio Reto x 2 1. Al racionalizar el denominador de la fracción 3 + se

Más detalles

Apuntes de matemáticas 2º ESO Curso 2013-2014. Lenguaje algebraico.

Apuntes de matemáticas 2º ESO Curso 2013-2014. Lenguaje algebraico. Lenguaje algebraico. Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas

Más detalles

UNIDAD: NÚMEROS Y PROPORCIONALIDAD. Los elementos del conjunto IN = {1, 2, 3, 4, 5, 6, 7,...} se denominan números

UNIDAD: NÚMEROS Y PROPORCIONALIDAD. Los elementos del conjunto IN = {1, 2, 3, 4, 5, 6, 7,...} se denominan números GUÍA Nº 2 UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS ENTEROS NÚMEROS NATURALES (ln) Los elementos del conjunto IN = {1, 2, 3, 4, 5, 6, 7,...} se denominan números naturales NÚMEROS ENTEROS (Z) Los elementos

Más detalles

Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2

Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2 Podemos definir a las ecuaciones como una igualdad entre expresiones algebraicas (encadenamiento de números y letras ligados por operaciones matemáticas diversas),en la que intervienen una o más letras,

Más detalles

Operaciones con monomios y polinomios

Operaciones con monomios y polinomios Operaciones con monomios y polinomios Para las operaciones algebraicas se debe de tener en cuenta que existen dos formas para representar cantidades las cuales son números o letras. Al representar una

Más detalles

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 1º ESO. (2ª parte)

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 1º ESO. (2ª parte) TRABAJO DE MATEMÁTICAS PENDIENTES DE 1º ESO. (2ª parte) NÚMEROS RACIONALES REDUCCIÓN DE FRACCIONES AL MISMO DENOMINADOR Para reducir varias fracciones al mismo denominador se siguen los siguientes pasos:

Más detalles

CONCEPTOS GENERALES SOBRE LA FACTORIZACIÓN: Qué es factorizar o factorear un polinomio?

CONCEPTOS GENERALES SOBRE LA FACTORIZACIÓN: Qué es factorizar o factorear un polinomio? CONCEPTOS GENERALES SOBRE LA FACTORIZACIÓN: Qué es factorizar o factorear un polinomio? Factorizar o Factorear significa "transformar en multiplicación" (o "producto", como también se le llama a la multiplicación).

Más detalles

Factorización. A 1 A 2 X ancho. f) A T = 352 m 2 largo largo Desarrollo: a) L 1 = 20m b) L 2 = 24m c) A 1 =? d) A 2 =? e) X = ancho 20 cm. 24 cm.

Factorización. A 1 A 2 X ancho. f) A T = 352 m 2 largo largo Desarrollo: a) L 1 = 20m b) L 2 = 24m c) A 1 =? d) A 2 =? e) X = ancho 20 cm. 24 cm. Factorización La Factorización se procede en forma contraria al desarrollo de Productos Notables es decir, nos dan un polinomio que debemos expresar como multiplicación (factores). Presentándosenos los

Más detalles

Matemáticas Universitarias

Matemáticas Universitarias Matemáticas Universitarias 1 Sesión No. 2 Nombre: Expresiones algebraicas y sus operaciones Objetivo de la asignatura: En esta sesión el estudiante aplicará las operaciones básicas como suma, resta, multiplicación

Más detalles

ECUACIONES DE PRIMER Y SEGUNDO GRADO

ECUACIONES DE PRIMER Y SEGUNDO GRADO 7. UNIDAD 7 ECUACIONES DE PRIMER Y SEGUNDO GRADO Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas que involucren la solución de ecuaciones de primer grado y de segundo grado

Más detalles

Tutorial MT-b1. Matemática Tutorial Nivel Básico. Elementos básicos de Aritmética

Tutorial MT-b1. Matemática Tutorial Nivel Básico. Elementos básicos de Aritmética 12345678901234567890 M ate m ática Tutorial MT-b1 Matemática 2006 Tutorial Nivel Básico Elementos básicos de Aritmética Matemática 2006 Tutorial Algunos elementos básicos de Aritmética Marco teórico: 1.

Más detalles

Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Sec. 5.1: Polinomios

Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Sec. 5.1: Polinomios Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Sec. 5.1: Polinomios Prof. Caroline Rodríguez Martínez Polinomios Un polinomio es un solo término o la suma de dos o más términos se compone

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles

FACTORIZACIÓN. De acuerdo con lo anterior, el resultado de una factorización siempre será un producto.

FACTORIZACIÓN. De acuerdo con lo anterior, el resultado de una factorización siempre será un producto. FACTORIZACIÓN. Factorizar consiste como su nombre lo indica, en obtener factores y como factores los elementos de una multiplicación, entonces factorizar es convertir una suma en una multiplicación indicada

Más detalles

Guía de Estudio Prueba de Aptitud Académica Matemática

Guía de Estudio Prueba de Aptitud Académica Matemática Escuela Politécnica PROGRAMA DE PRUEBAS DE ADMISIÓN Guía de Estudio Prueba de Aptitud Académica Matemática Ejército de Guatemala Visite: www.politecnica.edu.gt INTRODUCCIÓN Esta guía de estudio de matemática

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Una epresión algebraica es aquella en la que se operan números conocidos y números desconocidos representados por las letras a, b, c,, y, z,..., que se denominan

Más detalles

. 1. Expresiones algebraicas y reducción Producto y cociente de expresiones algebraicas Productos Notables...

. 1. Expresiones algebraicas y reducción Producto y cociente de expresiones algebraicas Productos Notables... . 1 . 1. Epresiones algebraicas y reducción... 0. Producto y cociente de epresiones algebraicas... 07. Productos Notables.... 1 4. Factorización.... 17 5. Simplificación de fracciones algebraicas.... 6

Más detalles

UNIDAD 10: ECUACIONES DE SEGUNDO GRADO.

UNIDAD 10: ECUACIONES DE SEGUNDO GRADO. UNIDAD 10: ECUACIONES DE SEGUNDO GRADO. 10.1 Estudio elemental de la ecuación de segundo grado. Expresión general. 10.2 Resolución de ecuaciones de segundo grado completas e incompletas. 10.3 Planteamiento

Más detalles

Expresiones algebraicas

Expresiones algebraicas Expresiones algebraicas Una expresión algebraica es una combinación de letras y números relacionadas por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las

Más detalles

RADICACIÓN EN LOS REALES

RADICACIÓN EN LOS REALES RADICACIÓN EN LOS REALES La raíz n ésima de un número real es otro número real tal que: n a b si y solo si b n Donde el signo se llama radical, n es el índice, a es el radicando y b es la raíz. En la radicación

Más detalles

APÉNDICE MATEMÁTICO DEL MÓDULO DE: GESTIÓN FINANCIERA

APÉNDICE MATEMÁTICO DEL MÓDULO DE: GESTIÓN FINANCIERA APÉNDICE MATEMÁTICO DEL MÓDULO DE: GESTIÓN FINANCIERA 1º CURSO DEL CICLO DE GRADO SUPERIOR DE ADMINISTRACIÓN Y FINANZAS. CONTENIDO: Números enteros Fracciones Potencias Igualdades algebraicas notables

Más detalles

POLINOMIOS. Un polinomio es una expresión algebraica (conjunto de. números y letras que representan números, conectados por las

POLINOMIOS. Un polinomio es una expresión algebraica (conjunto de. números y letras que representan números, conectados por las POLINOMIOS Teoría 1.- Qué es un polinomio? Un polinomio es una expresión algebraica (conjunto de números y letras que representan números, conectados por las operaciones de suma, resta, multiplicación,

Más detalles

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +...

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 x 1 + a 0 Siendo a n, a n -1... a 1, a o números,

Más detalles

Factorización ecuación identidad condicional término coeficiente monomio binomio trinomio polinomio grado ax3

Factorización ecuación identidad condicional término coeficiente monomio binomio trinomio polinomio grado ax3 Factorización Para entender la operación algebraica llamada factorización es preciso repasar los siguientes conceptos: Cualquier expresión que incluya la relación de igualdad (=) se llama ecuación. Una

Más detalles

CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV

CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV 1. Números reales. Aritmética y álgebra 1.1. Operar con fracciones de números

Más detalles

Capítulo 1 Números Reales

Capítulo 1 Números Reales Capítulo 1 Números Reales Noción de conjuntos Se denomina conjunto a un grupo o colección de objetos. A cada conjunto se le designa con una letra mayúscula. A los objetos que integran un conjunto reciben

Más detalles

Factorización de Polinomios. Profesora Ericka Salas González

Factorización de Polinomios. Profesora Ericka Salas González Factorización de Polinomios Profesora Ericka Salas González 19 de marzo de 2006 Índice general 0.1. QUE ES FACTORIZAR UN POLINOMIO..... 2 0.1.1. Factor............................ 2 0.1.2. Factorizar..........................

Más detalles

Ámbito Científico-Tecnológico Módulo IV Bloque 2 Unidad 1 Tan real como la vida misma

Ámbito Científico-Tecnológico Módulo IV Bloque 2 Unidad 1 Tan real como la vida misma Ámbito Científico-Tecnológico Módulo IV Bloque 2 Unidad 1 Tan real como la vida misma Estamos acostumbrados a trabajar con números naturales o enteros en la vida cotidiana pero en algunas ocasiones tendrás

Más detalles

FACTORIZACION FACTORIZACIÓN. Factorizar un número consiste en expresarlo como producto de dos de sus divisores.

FACTORIZACION FACTORIZACIÓN. Factorizar un número consiste en expresarlo como producto de dos de sus divisores. -PA-0 FACTORIZACION V0 Página de 9 NOCION: FACTORIZACIÓN Factorizar un número consiste en epresarlo como producto de dos de sus divisores. Ejemplo: Factoriza 0 en dos de sus divisores :, es decir 0 = Y

Más detalles
Sitemap