Curso º ESO. UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Curso º ESO. UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón"

Transcripción

1 2º ESO UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón

2 OBJETIVOS CONTENIDOS PROCEDIMIENTOS Lenguaje algebraico. Normas y Traducción a lenguaje algebraico valor numérico. de enunciados de la vida real. Cálculo del valor numérico de Monomios. Operaciones. expresiones algebraicas. Polinomios. Suma y resta. Operaciones y reducciones con monomios. Producto de polinomios. Operaciones de sumas y/o restas con polinomios. Productos notables Cálculo de productos de polinomios. Cálculo de productos notables. Extracción del factor común en expresiones algebraicas. 1. Utilizar el lenguaje algebraico y comprender sus reglas. 2. Hallar el valor numérico de una expresión algebraica. 3. Realizar operaciones de suma, resta, multiplicación y división de monomios. 4. Comprender qué son los polinomios y conocer las nociones básicas: término, término independiente, grado. Operaciones 5. Distinguir identidades y con solución y sin solución. 6. Determinar si un número es solución o no de una ecuación. 7. Identificar y resolver de primer grado. 8. Utilizar las para resolver problemas. Identidades. Ecuaciones. Ecuaciones equivalentes. Ecuaciones de primer grado. Ecuaciones de primer grado con denominadores. Ecuaciones de segundo grado sin término lineal. Identificación de identidades y. Comprobación de la validez de un valor como solución de una ecuación. Resolución de de primer grado. Obtención y resolución de la ecuación necesaria para resolver problemas. RESUMEN DE LA UNIDAD (1) El lenguaje algebraico utiliza letras en combinación de números signos. La parte de las Matemáticas que estudia la relación entre números, letras y signos se llama Álgebra. Una expresión algebraica es el conjunto de números y letras que se combinan con los signos de las operaciones matemáticas. Podemos hallar el valor numérico de una expresión algebraica: sustituimos las letras por números y realizamos las operaciones. Los monomios son las expresiones algebraicas más sencillas: Están formados por productos de números (coeficientes) y letras (parte literal o indeterminadas). Un polinomio es una expresión algebraica formada por la suma (o resta) de dos o más monomios. Podemos sumar, restar, multiplicar y dividir monomios (y también polinomios). Una ecuación es una igualdad algebraica que sólo se cumple para algunos valores concretos de la indeterminada que se llama incógnita. Resolver es encontrar el valor numérico de la incógnita. Se utilizan técnicas concretas para la resolución de, incluso con denominadores y paréntesis. 2

3 OBJETIVO 1 Ejemplo: Lenguaje cotidiano Lenguaje numérico Diez más quince son veinticinco 10+15=25 Dos elevado al cuadrado es cuatro 2 =4 La tercera parte de dieciocho es seis =6 Lenguaje algebraico El lenguaje que utiliza letras en combinación con números y signos se llama lenguaje algebraico. La parte de las Matemáticas que estudia la relación entre números, letras y signos se llama Álgebra. Una expresión algebraica es el conjunto de números y letras que se combinan con los signos de las operaciones matemáticas: suma, resta, multiplicación, división y potenciación. Ejemplo: Lenguaje cotidiano La suma de dos números (cualesquiera) El cuadrado de un número (cualquiera) La mitad de un número (cualquiera) Lenguaje algebraico a+b 2 1. Expresa en lenguaje algebraico. Lenguaje usual El doble de un número más dos unidades Un número disminuido en cinco unidades La tercera parte de un número El cubo de un número La diferencia de dos números El número siguiente a otro cualquiera El doble de x más dos unidades Lenguaje algebraico 3

4 2. Escribe en cada caso su correspondiente expresión algébrica. Expresión escrita El doble de un número b El doble de la suma de dos números (m y n) La edad de cualquier persona hace dos años. El cuadrado de un número x más 4 unidades La edad de cualquier persona dentro de quince años El número siguiente a otro cualquiera n Expresión algebraica 2 3. Inventa frases para estas expresiones algebraicas. Expresión escrita Expresión algebraica (m-n)

5 OBJETIVOS 2 Valor numérico de una expresión algebraica es el número que resulta de sustituir las letras por los números y realizar a continuación las operaciones que se indican. Ejemplo: Halla el valor numérico de la expresión algebraica 3 +2 cuando = =5 4. Calcula el valor numérico de las siguientes expresiones algebraicas de acuerdo a los distintos valores de x:

6 Unidades 6 y 7: Expresiones algebraicas y OBJETIVO 3 Monomios Un monomio es una expresión algebraica formada por el producto de un número por una o varias incógnitas. : : ó 2 2+1= ó 1 Los monomios son semejantes si tienen la misma parte literal. 2,16 son semejantes 5. Completa la tabla: Coeficiente Parte literal Grado 6. Escribe un monomio que cumpla las condiciones dadas en cada caso: a) Tener grado 3 y tres incógnitas b) Tener coeficiente negativo, dos incógnitas y grado 5 c) Tener coeficiente 5, una sola incógnita y grado 5 d) Tener coeficiente fraccionario, una incógnita y grado 4 7. Escribe dos monomios semejantes a cada uno de los monomios dados: 6

7 Suma y resta Sólo se pueden sumar o restar monomios semejantes. Para ello operamos los coeficientes y mantenemos la parte literal. + = = + Multiplicación y división Para multiplicar o dividir monomios se multiplican o dividen los coeficientes por un lado y las partes literales por otro. = ( Recuerda que para multiplicar potencias de igual base, se deja la misma base y se suman los exponentes) : = (Recuerda que para dividir potencias de igual base, ponemos la misma base y restamos los exponentes) 8. Siguiendo el ejemplo, opera hasta obtener una expresión más sencilla: + + = = + = = = = = e) = 9. Siguiendo el ejemplo, calcula el producto de los siguientes monomios: = = = = = = = 7

8 10. Observa el ejemplo y divide los siguientes monomios: : = = : = : = : = : = 11. Realiza las siguientes operaciones con monomios, efectuando primero las operaciones de los paréntesis: + = = Nota: Recuerda cómo se suman monomios semejantes + + : = : + = + : = 8

9 OBJETIVO 4 Polinomios Una expresión algebraica formada por suma y/o restas de dos o más monomios no semejantes se llama polinomio. Cada uno de los sumandos se denominan términos. Cada término puede tener coeficiente y parte literal, o sólo coeficiente y/o parte literal. Existen términos que sólo llevan números, se les llama términos independientes. Los polinomios también se pueden clasificar por grados. El término que tenga mayor grado determina, sumando los exponentes de su parte literal, el grado del polinomio. Ejemplo Polinomio Términos Término independiente Grado del polinomio,, 3; el grado de es 3 +, 2; el grado de es 2 +, 3; el grado de es 3 Suma y resta de polinomios Para sumar y restar polinomios, sumamos y restamos los monomios semejantes. Ejemplo: Dados A= y B= , calcula A+B y A-B = = = Dados los polinomios siguientes, calcula A+B y A-B: a) = + + = + + 9

10 b) = + + = + c) = + + = + d) = + = + Producto de polinomios Para multiplicar dos polinomios se multiplica cada monomio del primer polinomio por cada monomio del segundo. Ejemplo 1: 2 5 X 4 O también: =8 20 Ejemplo 2: + + X

11 13. Calcula los siguientes productos: e) + 11

12 Productos notables Cuadrado de la suma: + = + + = = = = + + Cuadrado de la diferencia: = = + = = = + Suma por diferencia: + = + = 3 5 = 14. Calcula, utilizando las fórmulas anteriores, los siguientes productos notables: +5 = 8 = 4 2 = 5+2 = + = 1 2 = 3+ 3 = h 2 +7 = = = 15. Encuentra el producto notable asociado a cada expresión: 36 = = = 49= 12

13 División de un polinomio entre un monomio (La división entre polinomios no es para este curso de 2º) Para dividir un polinomio entre un monomio dividimos cada monomio del polinomio entre el monomio en cuestión. Una fracción algebraica es una fracción con indeterminadas en el denominador + = +, ó + = + í 16. Realiza las siguientes divisiones: : = :3 = :3 = Extraer factor común La siguiente igualdad se verifica por la propiedad distributiva del producto respecto de la suma: + = + El factor común se puede extraer porque está en todos los sumandos 17. Extrae factor común: = = + 13

14 OBJETIVO 5 y 6 Ecuaciones e identidades Una ecuación es una igualdad entre dos expresiones algebraicas que es cierta o se verifica para algunos o un solo valor de la incógnita. = (sólo es cierta la igualdad para =1) Miembros de una ecuación son las dos expresiones algebraicas que hay a cada lado de la igualdad: a izquierda y a derecha (por lo tanto tiene sólo dos miembros) Términos de una ecuación son los sumandos que forman los miembros. Una identidad es una igualdad entre dos expresiones algebraicas que es cierta siempre. + = ( es cierta cualquiera que sea el número que pongamos en el lugar de x) Solución de una ecuación es el valor de la incógnita que cumple la igualdad = es la solución de la ecuación =, ya que = Si una ecuación no se verifica para ningún valor de la incógnita, se dice que es incompatible (ecuación sin solución). 18. Comprueba, siguiendo el ejemplo, si los valores indicados para son o no soluciones de las siguientes : Valor Ecuación Cálculo Solución (Sí/No) = + = + = Sí = = = = = = = + + = + = + + = + 14

15 OBJETIVO 7 Ecuaciones equivalentes. Resolución Dos son equivalentes si tienen las mismas soluciones Son equivalentes: 6+ =8 y +3=5 Para obtener equivalentes: ó ó ó Resolución de : Despejamos la incógnita (la dejamos sola), utilizando los procedimientos de obtención de equivalentes: + = = =8 4 4 =8 4 = ó Este proceso es equivalente al siguiente, mas simplificado: á, + = = =, á, = = ó 19. Resuelve las siguientes despejando la incógnita: + = = + = + = + = = = + = + + = + + = + 15

16 Resolución de con paréntesis = 1. Quitamos los paréntesis: =4 10 = 2. Resolvemos la ecuación: 10 4 = = 6 = 6 = Resuelve paso a paso: = + = + = = = = = + = = + = 16

17 Resolución de con denominadores = + 1. Reducimos a común denominado todos los términos de la ecuación: El m.c.m. es = Quitamos denominadores y resolvemos: = + 6 4= =8 6 12= = = 21. Calcula la solución de las siguientes con denominadores: = = = + = = + + = (Conviene simplificar antes de reducir a común denominador) 17

18 Resolución de con paréntesis y denominadores = 1. Quitamos paréntesis: = = 2. Reducimos a común denominador ambos miembros. El m.c.m. es 2: = = 3. Quitamos denominadores y resolvemos la ecuación: = =48+20 á, 17 =68 = 22. Resuelve las siguientes : = = + = + = = = 18

19 OBJETIVOS 8 Resolución de problemas mediante Leer atentamente el enunciado Identificar y dar nombre a la incógnita Traducir al lenguaje algebraico las relaciones entre los elementos del problema Resolver la ecuación Interpretar la solución y responder a la pregunta formulada Ejemplo: Busca dos números naturales consecutivos cuya suma sea 15 DATOS INCÓGNITAS FÓRMULAS Y/O RESOLUCIÓN (Relación entre ambos) + + = La suma de ambos números naturales, es 15 = º, + = + + = + + = = = = = Solución : Los números buscados son 7 y Si sumo 4 al número de mi camiseta de fútbol, resulta un número equivalente al doble del anterior al que llevo. Cuál es el número de mi camiseta? DATOS INCÓGNITAS FÓRMULAS Y/O RESOLUCIÓN Solución : 19

20 24. El procesador de mi ordenador ha costado 550 más que el monitor. Si los dos elementos juntos valen 1374, cuánto cuesta cada uno? 25. Si un hijo tiene 12 años y su padre 38, cuántos años deberán pasar para que el padre tenga el triple de la edad de su hijo? 26. He comprado 3 pantalones y me han sobrado 10. Si hubiera comprado 4 pantalones me hubieran faltado 3. Cuánto cuesta un pantalón? 20

21 27. Tengo el triple de billetes de 10 que de 20. Si en total tengo 200, cuántos billetes hay de cada valor? 28. La altura de un rectángulo mide 14 cm menos que la base. Si el perímetro del rectángulo es de 32 cm, cuánto mide la base? Ecuaciones de segundo grado sin término lineal Una ecuación de segundo grado es de la forma: + + = Nos referiremos en lo sucesivo, sólo a las de la forma + =, es decir sin el término lineal. Término cuadrático, Término independiente, Resolución de + = : (Si Ejemplo: Resolver la ecuación 3 = + = = = =± <0,,, ó ó 3 = 3 = = = = ± =± 21

22 29. Resolver las : = = = + = = 30. Cuánto debe medir la base de un triángulo para que valga el doble que su altura si dicho triángulo tiene un área de? 22

Expresiones algebraicas (1º ESO)

Expresiones algebraicas (1º ESO) Epresiones algebraicas (º ESO) Lenguaje numérico y lenguaje algebraico. El lenguaje en el que intervienen números y signos de operaciones se denomina lenguaje numérico. Lenguaje usual Lenguaje numérico

Más detalles

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma. FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto

Más detalles

Una expresión algebraica es una combinación de números y letras combinados mediante las operaciones matemáticas.

Una expresión algebraica es una combinación de números y letras combinados mediante las operaciones matemáticas. TEMA 6 EXPRESIONES ALGEBRAICAS Una expresión algebraica es una combinación de números y letras combinados mediante las operaciones matemáticas. Ejemplo: 2 x, 2 a + 3, m (n - 3),... Usamos las expresiones

Más detalles

Alumno Fecha Actividad 13 Expresiones algebraicas 1º ESO

Alumno Fecha Actividad 13 Expresiones algebraicas 1º ESO Alumno Fecha Actividad 1 Expresiones algebraicas 1º ESO Las expresiones que resultan de combinar números y letras relacionándolos con las operaciones habituales se llaman expresiones algebraicas y se utilizan

Más detalles

4 Ecuaciones e inecuaciones

4 Ecuaciones e inecuaciones Ecuaciones e inecuaciones INTRODUCCIÓN Comenzamos esta unidad diferenciando entre identidades y ecuaciones, y definiendo los conceptos asociados a cualquier ecuación: miembros, términos, coeficientes,

Más detalles

COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS. 1º ESO

COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS. 1º ESO COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS. º ESO RELACIÓN 5: ALGEBRA Lenguaje algebraico, monomios polinomios EXPRESIÓN ALGEBRAICA Es un conjunto de números letras

Más detalles

cómo expresarías?. ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: POLINOMIOS Grupo: 3º A Expresiones algebraicas Álgebra vs Aritmética

cómo expresarías?. ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: POLINOMIOS Grupo: 3º A Expresiones algebraicas Álgebra vs Aritmética 16/01/01 ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: POLINOMIOS Grupo: º A cómo expresarías?. La altura de mi hermano si te digo que mide 10 cm más que mi hermana: El perímetro de un triángulo

Más detalles

Tema 6 Lenguaje Algebraico. Ecuaciones

Tema 6 Lenguaje Algebraico. Ecuaciones Tema 6 Lenguaje Algebraico. Ecuaciones 1. El álgebra El álgebra es una rama de las matemáticas que emplea números y letras con las operaciones aritméticas de sumar, restar, multiplicar, dividir, potencias

Más detalles

MATEMÁTICAS II CC III PARCIAL

MATEMÁTICAS II CC III PARCIAL UNIDAD DIDÁCTICA #3 CONTENIDO ECUACIONES LINEALES CON UNA INCOGNITA TIPOS DE ECUACIONES RESOLUCION DE ECUACIONES LINEALES INECUACIONES LINEALES 1 ECUACIONES LINEALES CON UNA INCOGNITA Una ecuación es una

Más detalles

TEMA 4: EXPRESIONES ALGEBRAICAS.

TEMA 4: EXPRESIONES ALGEBRAICAS. TEMA 4: EXPRESIONES ALGEBRAICAS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. CURSO 2011-2012 Página 1 de 14 Profesor: Manuel González de León Curso

Más detalles

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 1º ESO. (2ª parte)

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 1º ESO. (2ª parte) TRABAJO DE MATEMÁTICAS PENDIENTES DE 1º ESO. (2ª parte) NÚMEROS RACIONALES REDUCCIÓN DE FRACCIONES AL MISMO DENOMINADOR Para reducir varias fracciones al mismo denominador se siguen los siguientes pasos:

Más detalles

EL LENGUAJE ALGEBRAICO

EL LENGUAJE ALGEBRAICO LENGUAJE ALGEBRAICO Guillermo Ruiz Varela - PT EL LENGUAJE ALGEBRAICO Hasta ahora siempre hemos trabajado en matemáticas con números y signos, es lo que se llama lenguaje numérico. A partir de ahora, vamos

Más detalles

MONOMIOS Y POLINOMIOS

MONOMIOS Y POLINOMIOS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas y se representan por letras.

Más detalles

Mó duló 04: Á lgebra Elemental I

Mó duló 04: Á lgebra Elemental I INTERNADO MATEMÁTICA 016 Guía para el Estudiante Mó duló 04: Á lgebra Elemental I Objetivo: Identificar y utilizar conceptos matemáticos asociados al estudio del álgebra elemental. Problema 1 La edad de

Más detalles

CUADERNO Nº 6 NOMBRE:

CUADERNO Nº 6 NOMBRE: Ecuaciones Contenidos 1. Ecuaciones: ideas básicas Igualdades y ecuaciones Elementos de una ecuación Ecuaciones equivalentes 2. Reglas para resolver una ecuación Sin denominadores Con denominadores Resolución

Más detalles

Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto

Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto En esta unidad vas a comenzar el estudio del álgebra, el lenguaje de las matemáticas. Vas a aprender

Más detalles

Expresiones algebraicas

Expresiones algebraicas Epresiones algebraicas Matemáticas I 1 Epresiones algebraicas Epresiones algebraicas. Monomios y polinomios. Monomios y polinomios. Una epresión algebraica es una combinación de letras, números y signos

Más detalles

Ficha de Repaso: Lenguaje Algebraico

Ficha de Repaso: Lenguaje Algebraico Ficha de Repaso: Lenguaje Algebraico 1º) Traduce las siguientes afirmaciones al lenguaje algebraico: a) El doble de un número b) El cubo de un número c) El cuadrado de un número menos su doble d) Un número

Más detalles

MATEMÁTICAS Nivel 2º E.S.O.

MATEMÁTICAS Nivel 2º E.S.O. Tema º Ecuaciones MATEMÁTICAS Nivel º E.S.O. Tema º ECUACIONES Conocimientos que puedes adquirir:. Concepto de ecuación.. Ecuaciones equivalentes.. Ecuaciones de er grado con una incógnita.. Resolución

Más detalles

EXPRESIONES ALGEBRAICAS ECUACIONES

EXPRESIONES ALGEBRAICAS ECUACIONES EXPRESIONES ALGEBRAICAS ECUACIONES I. Expresiones Algebraicas Una expresión algebraica es una combinación de números y letras, o sólo de letras, unidos por los signos de las operaciones aritméticas. x

Más detalles

RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO

RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO OBJETIVO RECONOCER EL GRADO, EL TÉRMINO Y LOS COEICIENTES DE UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma de monomios, que son los términos del polinomio.

Más detalles

RESUMEN DE CONCEPTOS

RESUMEN DE CONCEPTOS RESUMEN DE CONCEPTOS 1º ESO MATEMÁTICAS NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número exacto de veces. Ejemplo: 16 es múltiplo

Más detalles

I.E.S. Tierra de Ciudad Rodrigo Departamento de Matemáticas TEMA 6. POLINOMIOS

I.E.S. Tierra de Ciudad Rodrigo Departamento de Matemáticas TEMA 6. POLINOMIOS TEMA 6. POLINOMIOS Una expresión algebraica es un conjunto de letras y números unidos por los signos matemáticos. Las expresiones algebraicas surgen de traducir al lenguaje matemático enunciados en los

Más detalles

LOS NUMEROS IRRACIONALES Y SU REPRESENTACIÓN EN LA RECTA NUMERICA

LOS NUMEROS IRRACIONALES Y SU REPRESENTACIÓN EN LA RECTA NUMERICA GUIA Nº 1: LOS NÚMEROS REALES 1 GRADO: 8º PROFESORA: Eblin Martínez M. ESTUDIANTE: PERIODO: I DURACIÓN: 20 Hrs LOGRO: Realizo operaciones con números naturales, enteros, racionales e irracionales. INDICADORES

Más detalles

1. ESQUEMA - RESUMEN Página EJERCICIOS DE INICIACIÓN Página EJERCICIOS DE DESARROLLO Página EJERCICIOS DE REFUERZO Página 25

1. ESQUEMA - RESUMEN Página EJERCICIOS DE INICIACIÓN Página EJERCICIOS DE DESARROLLO Página EJERCICIOS DE REFUERZO Página 25 1. ESQUEMA - RESUMEN Página. EJERCICIOS DE INICIACIÓN Página 6. EJERCICIOS DE DESARROLLO Página 17 5. EJERCICIOS DE REFUERZO Página 5 1 1. ESQUEMA - RESUMEN Página 1.1. EXPRESIONES ALGEBRAICAS. 1.. VALOR

Más detalles

UNIDAD 5: ÁLGEBRA. Nacho Jiménez ANT ÍNDICE SIG

UNIDAD 5: ÁLGEBRA. Nacho Jiménez ANT ÍNDICE SIG UNIDAD 5: ÁLGEBRA Nacho Jiménez 0. Conceptos previos ÍNDICE 1. Para qué sirve el álgebra? 2. Expresiones algebraicas 2.1 Monomios 2.2 Suma y resta de monomios 2.3 Multiplicación de monomios 2.4 División

Más detalles

MATEMÁTICAS ÁLGEBRA (TIC)

MATEMÁTICAS ÁLGEBRA (TIC) COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS ÁLGEBRA (TIC) GRADO:8 O A, B DOCENTE: Nubia E. Niño C. FECHA: 23 / 02 / 15 GUÍA UNIFICADA: # 1 5; # 1-6 y 1-7 DESEMPEÑOS:

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas º ESO 1. Expresiones algebraicas En matemáticas es muy común utilizar letras para expresar un resultado general. Por ejemplo, el área de un b h triángulo es base por altura dividido por dos y se expresa

Más detalles

TEMA 5. Expresiones Algebraicas

TEMA 5. Expresiones Algebraicas TEMA 5 Expresiones Algebraicas 5.1.- Lenguaje Algebraico El lenguaje numérico sirve para expresar operaciones utilizando solamente números. El lenguaje algebraico sirve para expresar situaciones reales

Más detalles

Preparación para Álgebra 1 de Escuela Superior

Preparación para Álgebra 1 de Escuela Superior Preparación para Álgebra 1 de Escuela Superior Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales

Más detalles

NÚMEROS ENTEROS. 2º. Representa en una recta numérica los números: (+4), (-3), (0), (+7), (-2), (+2) y luego escríbelos de forma ordenada.

NÚMEROS ENTEROS. 2º. Representa en una recta numérica los números: (+4), (-3), (0), (+7), (-2), (+2) y luego escríbelos de forma ordenada. URB. LA CANTERA S/N. HTTP:/WWW.MARIAAUXILIADORA.COM º ESO 1º. Indica el número que corresponde a cada letra. NÚMEROS ENTEROS º. Representa en una recta numérica los números: (+) (-) (0) (+) (-) (+) y luego

Más detalles

Definición: Una expresión algebraica es una combinación de números, letras y paréntesis, relacionados con operaciones. o Ejemplo: 3! + 5! 3!

Definición: Una expresión algebraica es una combinación de números, letras y paréntesis, relacionados con operaciones. o Ejemplo: 3! + 5! 3! Expresiones algebraicas. Definición: Una expresión algebraica es una combinación de números, letras y paréntesis, relacionados con operaciones. o Ejemplo: 3 + 5 3 (9 3) - 12 " Elementos de una expresión

Más detalles

2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores).

2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores). Bloque 3. ECUACIONES Y SISTEMAS (En el libro Temas 4 y 5, páginas 63 y 81) 1. Ecuaciones: Definiciones. Reglas de equivalencia. 2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores).

Más detalles

UNIDAD DE APRENDIZAJE I

UNIDAD DE APRENDIZAJE I UNIDAD DE APRENDIZAJE I Saberes procedimentales Interpreta y utiliza correctamente el lenguaje simbólico para el manejo de expresiones algebraicas. 2. Identifica operaciones básicas con expresiones algebraicas.

Más detalles

Fracciones. Contenidos. Objetivos. 1. Fracciones Fracciones Equivalentes Simplificación de Fracciones

Fracciones. Contenidos. Objetivos. 1. Fracciones Fracciones Equivalentes Simplificación de Fracciones Fracciones Contenidos 1. Fracciones Fracciones Equivalentes Simplificación de Fracciones 2. Fracciones con igual denominador Reducción a común denominador Comparación de fracciones 3. Operaciones con fracciones

Más detalles

Inecuaciones en. Desigualdad: se llama desigualdad a toda relación entre expresiones numéricas o algebraicas. Propiedades de las desigualdades:

Inecuaciones en. Desigualdad: se llama desigualdad a toda relación entre expresiones numéricas o algebraicas. Propiedades de las desigualdades: Inecuaciones en Introducción Desigualdad: se llama desigualdad a toda relación entre epresiones numéricas o algebraicas unidas por uno de los cuatro signos de desigualdad,,,, Por ejemplo: 6 ; ; 8, etc....

Más detalles

Bloque 1. Aritmética y Álgebra

Bloque 1. Aritmética y Álgebra Bloque 1. Aritmética y Álgebra 12. Sistemas de ecuaciones 1. Sistemas de ecuaciones Un sistema de ecuaciones es un conjunto de dos o más ecuaciones con varias incógnitas que conforman un problema matemático

Más detalles

Introducción al Álgebra

Introducción al Álgebra Capítulo 3 Introducción al Álgebra L a palabra álgebra deriva del nombre del libro Al-jebr Al-muqābāla escrito en el año 825 D.C. por el matemático y astrónomo musulman Mohamad ibn Mūsa Al-Khwārizmī. El

Más detalles

Expresiones algebraicas

Expresiones algebraicas Expresiones algebraicas Contenidos 1. Lenguaje algebraico Expresiones algebraicas Traducción de enunciados Valor numérico 2. Monomios Características Suma y resta Producto 3. Ecuaciones Solución de una

Más detalles

EXPRESIONES ALGEBRAICAS. El tripe de un número menos «cinco» en lenguaje algebraico se escribe

EXPRESIONES ALGEBRAICAS. El tripe de un número menos «cinco» en lenguaje algebraico se escribe 1 Álgebral EXPRESIONES ALGEBRAICAS El tripe de un número menos «cinco» en lenguaje algebraico se escribe 3x 5: 3x 5 es una expresión algebraica donde x es la incógnita. La letra x representa un número

Más detalles

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las

Más detalles

Ecuaciones de primer grado

Ecuaciones de primer grado i Ecuaciones de primer grado M. Dolores Guadalupe Duarte Marinas José Navarro Cáceres e-lectolibris 18 de febrero de 2014 Ecuaciones de primer grado Considera la siguiente expresión: 2x + 1 = 7, observa

Más detalles

Ámbito Científico-tecnológico Módulo III Bloque 3 Unidad 4 Fácil, fácil, fácil. Pon una ecuación en tu vida

Ámbito Científico-tecnológico Módulo III Bloque 3 Unidad 4 Fácil, fácil, fácil. Pon una ecuación en tu vida Ámbito Científico-tecnológico Módulo III Bloque 3 Unidad 4 Fácil, fácil, fácil. Pon una ecuación en tu vida Siempre se ha dicho que las ecuaciones son muy difíciles. Casi con pronunciar su nombre ya da

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Una epresión algebraica es aquella en la que se operan números conocidos y números desconocidos representados por las letras a, b, c,, y, z,..., que se denominan

Más detalles

Revisora: María Molero

Revisora: María Molero 57 Capítulo 5: INECUACIONES. Matemáticas 4ºB ESO 1. INTERVALOS 1.1. Tipos de intervalos Intervalo abierto: I = (a, b) = {x a < x < b}. Intervalo cerrado: I = [a, b] = {x a x b}. Intervalo semiabierto por

Más detalles

RADICACIÓN EN LOS REALES

RADICACIÓN EN LOS REALES RADICACIÓN EN LOS REALES La raíz n ésima de un número real es otro número real tal que: n a b si y solo si b n Donde el signo se llama radical, n es el índice, a es el radicando y b es la raíz. En la radicación

Más detalles

Ecuaciones lineales en una variable. Prof. Anneliesse Sánchez Adaptada por Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo

Ecuaciones lineales en una variable. Prof. Anneliesse Sánchez Adaptada por Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Ecuaciones lineales en una variable Prof. Anneliesse Sánchez Adaptada por Caroline Rodriguez Departamento de Matemáticas UPR - Arecibo Qué es una ecuación? Una ecuación es una oración que expresa la igualdad

Más detalles

APÉNDICE MATEMÁTICO DEL MÓDULO DE: GESTIÓN FINANCIERA

APÉNDICE MATEMÁTICO DEL MÓDULO DE: GESTIÓN FINANCIERA APÉNDICE MATEMÁTICO DEL MÓDULO DE: GESTIÓN FINANCIERA 1º CURSO DEL CICLO DE GRADO SUPERIOR DE ADMINISTRACIÓN Y FINANZAS. CONTENIDO: Números enteros Fracciones Potencias Igualdades algebraicas notables

Más detalles

CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV

CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV 1. Números reales. Aritmética y álgebra 1.1. Operar con fracciones de números

Más detalles

1. OPERATORIA ALGEBRAICA 1.1 TÉRMINOS SEMEJANTES

1. OPERATORIA ALGEBRAICA 1.1 TÉRMINOS SEMEJANTES MATEMÁTICA MÓDULO 1 Eje temático: Álgebra 1. OPERATORIA ALGEBRAICA 1.1 TÉRMINOS SEMEJANTES Se denominan términos semejantes a aquellos que tienen la misma parte literal. Por ejemplo: -2a 2 b y 5a 2 b son

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles

Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2

Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2 Podemos definir a las ecuaciones como una igualdad entre expresiones algebraicas (encadenamiento de números y letras ligados por operaciones matemáticas diversas),en la que intervienen una o más letras,

Más detalles

UNA ECUACIÓN es una igualdad de dos expresiones algebraicas.

UNA ECUACIÓN es una igualdad de dos expresiones algebraicas. UNA EXPRESIÓN ALGEBRAICA es una combinación de números, variables (o símbolos) y operaciones como la suma, resta, multiplicación, división, potenciación y radicación. Ejemplos. UNA ECUACIÓN es una igualdad

Más detalles

Matemáticas 2º E.S.P.A. Pág.1 C.E.P.A. Plus Ultra. Logroño

Matemáticas 2º E.S.P.A. Pág.1 C.E.P.A. Plus Ultra. Logroño ALGEBRA 1. LETRAS EN VEZ DE NÚMEROS En muchas tareas de las matemáticas es preciso trabajar con números de valor desconocido o indeterminado. En esos casos, los números se representan por letras y se operan

Más detalles

EJERCICIOS DE EXPRESIONES ALGEBRAICAS

EJERCICIOS DE EXPRESIONES ALGEBRAICAS EJERCICIOS DE EXPRESIONES ALGEBRAICAS Ejercicio nº.- Epresa en lenguaje algebraico cada uno de los siguientes enunciados: a El 0% de un número. b El área de un rectángulo de base cm y altura desconocida.

Más detalles

UNIDAD 2: ECUACIONES E INECUACIONES. SISTEMAS DE ECUACIONES

UNIDAD 2: ECUACIONES E INECUACIONES. SISTEMAS DE ECUACIONES UNIDAD 2: ECUACIONES E INECUACIONES. SISTEMAS DE ECUACIONES 1. IDENTIDADES Y ECUACIONES 2. ECUACIONES POLINÓMICAS 3. ECUACIONES BICUADRADAS 4. ECUACIONES RACIONALES 5. ECUACIONES IRRACIONALES 6. ECUACIONES

Más detalles

SERIE INTRODUCTORIA. REPASO DE ALGEBRA.

SERIE INTRODUCTORIA. REPASO DE ALGEBRA. SERIE INTRODUCTORIA. REPASO DE ALGEBRA. 1.- REDUCCION DE TÉRMINOS SEMEJANTES. Recuerde que los términos semejantes son aquellos que tienen las mismas letras con los mismos exponentes. Ejemplos: *7m; 5m

Más detalles

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA. POLINOMIOS Y FRACCIONES ALGEBRAICAS.. Repaso de polinomios - Epresión algebraica. Valor numérico - Polinomios. Operaciones con polinomios.. Identidades notables - Cuadrado de una suma de una diferencia

Más detalles

TEMA 05 - EXPRESIONES ALGEBRAICAS

TEMA 05 - EXPRESIONES ALGEBRAICAS º ESO TEMA 05 - EXPRESIONES ALGEBRAICAS 1º. Indica las expresiones algebraicas correspondientes a los siguientes enunciados, utilizando una sola letra (x): a) El siguiente de un número, más tres unidades.

Más detalles

Unidad 1: Los números enteros Pag. 3 Unidad 2: Potencias y raíces.pag. 33 Unidad 3: Fracciones y decimales..pag. 64 Unidad 4: Expresiones algebraicas

Unidad 1: Los números enteros Pag. 3 Unidad 2: Potencias y raíces.pag. 33 Unidad 3: Fracciones y decimales..pag. 64 Unidad 4: Expresiones algebraicas Unidad 1: Los números enteros Pag. 3 Unidad 2: Potencias y raíces.pag. 33 Unidad 3: Fracciones y decimales..pag. 64 Unidad 4: Expresiones algebraicas Pag. 91 Unidad 5: Ecuaciones Pag. 130 Los números enteros

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA IV : LAS FRACCIONES. OPERACIONES Los siginificados de una fracción. Fracciones propias e impropias. Equivalencias de fracciones. Amplificación y simplificación. Fracción

Más detalles

2. ECUACIONES LINEALES O DE PRIMER GRADO

2. ECUACIONES LINEALES O DE PRIMER GRADO . ECUACIONES LINEALES O DE PRIMER GRADO El objetivo de este capítulo es repasar las ecuaciones lineales o de primer grado y resolver ecuaciones lineales por medio de propiedades vistas en la unidad nº

Más detalles

El curso está dividido en tres evaluaciones, de acuerdo con la programación general del Colegio, temporalizados así:

El curso está dividido en tres evaluaciones, de acuerdo con la programación general del Colegio, temporalizados así: b) Distribución temporal de las unidades didácticas El curso está dividido en tres evaluaciones, de acuerdo con la programación general del Colegio, temporalizados así: 1ª EVALUACIÓN Tema 1 Tema 2 Tema

Más detalles

RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO

RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO 2015-2016 UNIDAD 1: NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número

Más detalles

Ecuaciones de primer grado o lineales

Ecuaciones de primer grado o lineales CATÁLOGO MATEMÁTICO POR JUAN GUILLERMO BUILES GÓMEZ BASE 8: ECUACIONES DE PRIMER Y DE SEGUNDO GRADO RESOLUCIÓN DE PROBLEMAS ECUACIONES DE PRIMER GRADO O LINEALES CON UNA SOLA INCÓGNITA: Teoría tomada de

Más detalles

UNIDAD 10: ECUACIONES DE SEGUNDO GRADO.

UNIDAD 10: ECUACIONES DE SEGUNDO GRADO. UNIDAD 10: ECUACIONES DE SEGUNDO GRADO. 10.1 Estudio elemental de la ecuación de segundo grado. Expresión general. 10.2 Resolución de ecuaciones de segundo grado completas e incompletas. 10.3 Planteamiento

Más detalles

Representación Gráfica (recta numérica)

Representación Gráfica (recta numérica) NÚMEROS NATURALES ( N ) Representación Gráfica (recta numérica) 0 1 2 3 4 R Mediante un punto negro representamos el 1, el 3 y el 4 NÚMEROS ENTEROS ( Z ) - 2-1 0 1 2 R Mediante un punto negro representamos

Más detalles

Matemáticas Universitarias

Matemáticas Universitarias Matemáticas Universitarias 1 Sesión No. 2 Nombre: Expresiones algebraicas y sus operaciones Objetivo de la asignatura: En esta sesión el estudiante aplicará las operaciones básicas como suma, resta, multiplicación

Más detalles

Factorización ecuación identidad condicional término coeficiente monomio binomio trinomio polinomio grado ax3

Factorización ecuación identidad condicional término coeficiente monomio binomio trinomio polinomio grado ax3 Factorización Para entender la operación algebraica llamada factorización es preciso repasar los siguientes conceptos: Cualquier expresión que incluya la relación de igualdad (=) se llama ecuación. Una

Más detalles

Ecuaciones de primer grado

Ecuaciones de primer grado Matemáticas Unidad 16 Ecuaciones de primer grado Objetivos Resolver problemas que impliquen el planteamiento y la resolución de ecuaciones de primer grado de la forma x + a = b; ax = b; ax + b = c, utilizando

Más detalles

EL LENGUAJE ALGEBRAICO

EL LENGUAJE ALGEBRAICO TEMA 5 EL LENGUAJE ALGEBRAICO ÁLGEBRA, EL ARTE DE LA COSA Como casi todas las palabras actuales que empiezan por al, el término álgebra tiene origen árabe. Se lo debemos a un matemático llamado Al-Khwarizmi,

Más detalles

2. EXPRESIONES ALGEBRAICAS

2. EXPRESIONES ALGEBRAICAS 2. EXPRESIONES ALGEBRAICAS Tales como, 2X 2 3X + 4 ax + b Se obtienen a partir de variables como X, Y y Z, constantes como -2, 3, a, b, c, d y cobinadas utilizando la suma, resta, multiplicación, división

Más detalles

Se dice que dos monomios son semejantes cuando tienen la misma parte literal

Se dice que dos monomios son semejantes cuando tienen la misma parte literal Expresiones algebraicas 1 MONOMIOS Conceptos Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural.

Más detalles

Institución Educativa Distrital Madre Laura

Institución Educativa Distrital Madre Laura Una fracción algebraica es una expresión fraccionaria en la que numerador y denominador son polinomios. Son fracciones algebraicas: Las fracciones algebraicas tienen un comportamiento similar a las fracciones

Más detalles

MATERIA: MATEMÁTICAS CURSO: CONTENIDOS MÍNIMOS EXTRACTO DE LA PROGRAMACIÓN DIDÁCTICA IES VEGA DEL TÁDER 2º ESO

MATERIA: MATEMÁTICAS CURSO: CONTENIDOS MÍNIMOS EXTRACTO DE LA PROGRAMACIÓN DIDÁCTICA IES VEGA DEL TÁDER 2º ESO MATERIA: MATEMÁTICAS CURSO: 2º ESO CONTENIDOS MÍNIMOS NÚMEROS. Relación de divisibilidad. Descomposición de un número natural en factores primos y cálculo del máximo común divisor y del mínimo común múltiplo

Más detalles

GUIA ALGEBRA PARTE I. Ejercicios básicos de aritmética EJERCICIOS

GUIA ALGEBRA PARTE I. Ejercicios básicos de aritmética EJERCICIOS 1 GUIA ALGEBRA PARTE I Ejercicios básicos de aritmética QUEBRADOS Fracciones mixtas ejemplo 3 4/5 Una fracción mixta es un número entero y una fracción combinados, como 1 3 / 4. Fracciones propias ejemplo

Más detalles

SISTEMA DE ECUACIONES LINEALES. Ecuación lineal con dos incógnitas Una ecuación de primer grado se denomina ecuación lineal.

SISTEMA DE ECUACIONES LINEALES. Ecuación lineal con dos incógnitas Una ecuación de primer grado se denomina ecuación lineal. Liceo A 10 Manuel Barros Borgoño Departamento de Matemática SISTEMA DE ECUACIONES LINEALES Ecuación lineal con dos incógnitas Una ecuación de primer grado se denomina ecuación lineal. Una ecuación lineal

Más detalles

Matemáticas 1º de ESO. Capítulo 12: Álgebra. Revisores: Pedro Luis Suberviola y Sergio Hernández

Matemáticas 1º de ESO. Capítulo 12: Álgebra. Revisores: Pedro Luis Suberviola y Sergio Hernández 99 Matemáticas 1º de ESO. Capítulo 12: Álgebra CAPÍTULO 12: Álgebra. Matemáticas 1º de ESO 1.1. Letras y números A nuestro alrededor nos encontramos con multitud de símbolos cuyo significado conocemos,

Más detalles

CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria.

CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. CONJUNTOS NUMÉRICOS La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. Por ejemplo, usamos números para contar una determinada cantidad

Más detalles

Ecuaciones de Primer Grado con una Incógnita

Ecuaciones de Primer Grado con una Incógnita Tema 5 Ecuaciones de Primer Grado con una Incógnita Una ecuación es una igualdad ( = ) que sólo se verifica para unos valores concretos de una variable, generalmente llamada x. Cuando sólo aparece una

Más detalles

Guía Nº 1(B) ALGEBRA

Guía Nº 1(B) ALGEBRA Liceo Industrial Benjamín Dávila Larraín Unidad Técnica Pedagógica Guía Nº (B) ALGEBRA I. Identificación Docente Verónica Moya R. Claudia Paez Subsector/Módulo Matemática Email docente Aprendizaje Esperado

Más detalles

ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA

ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA Recordar: Una ecuación es una igualdad algebraica en la que aparecen letras (incógnitas) con valor desconocido. El grado de una ecuación viene dado por el eponente

Más detalles

Tema 3. Polinomios y fracciones algebraicas

Tema 3. Polinomios y fracciones algebraicas Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones.. Operaciones con monomios. Polinomios.. Definiciones.. Operaciones con polinomios. Factorización de un polinomio.. Teorema del resto.

Más detalles

CONTENIDOS: ALGEBRA. 1. SISTEMA DE LOS NÚMEROS REALES

CONTENIDOS: ALGEBRA. 1. SISTEMA DE LOS NÚMEROS REALES UNIVERSIDAD TÉCNICA DE MANABÍ FACULTAD DE CIENCIAS INFORMÁTICAS CARRERA DE INGENIERÍA EN SISTEMAS INFORMÁTICOS CONTENIDOS DE MATEMÁTICAS PARA LA PRUEBA DE CONOCIMIENTOS OBJETIVO: Diagnosticar los conocimientos

Más detalles

TEMA 1. Números Reales. Teoría. Matemáticas

TEMA 1. Números Reales. Teoría. Matemáticas 1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo

Más detalles

Guía 1: PATRONES DE REPETICIÓN

Guía 1: PATRONES DE REPETICIÓN Guía : PATRONES DE REPETICIÓN Un patrón es una sucesión de elementos (orales, gestuales, gráficos, de comportamiento, numéricos) que se construye siguiendo una regla, ya sea de repetición o de recurrencia.

Más detalles

3. Muestra en un diagrama de Venn-Euler estas mismas operaciones.

3. Muestra en un diagrama de Venn-Euler estas mismas operaciones. Unidad. I. Conjuntos Conceptos: Conjunto Conjunto por extensión y por comprensión Cardinalidad Conjunto universal Conjunto vacío Subconjunto Revisa como se efectúan cada una de las operaciones entre conjuntos,

Más detalles

Matemáticas B 4º E.S.O.- Ecuaciones, Inecuaciones y Sistemas. 1

Matemáticas B 4º E.S.O.- Ecuaciones, Inecuaciones y Sistemas. 1 Matemáticas B 4º E.S.O.- Ecuaciones, Inecuaciones y Sistemas. 1 ECUACIONES INECUACIONES Y SISTEMAS ECUACIONES Una ecuación es una propuesta de igualdad en la que interviene alguna letra llamada incógnita.

Más detalles

Si a los lados de un cuadrado se les aumenta el 10% de su medida. en qué porcentaje se incrementa su área?

Si a los lados de un cuadrado se les aumenta el 10% de su medida. en qué porcentaje se incrementa su área? Ejercicio 75 Si a los lados de un cuadrado se les aumenta el 10% de su medida. en qué porcentaje se incrementa su área? Respuesta Si el lado del cuadrado es x Area= lado por lado El área del nuevo cuadrado

Más detalles

UNIDAD 1: NÚMEROS RACIONALES OBJETIVOS

UNIDAD 1: NÚMEROS RACIONALES OBJETIVOS UNIDAD 1: NÚMEROS RACIONALES Distinguir las distintas interpretaciones de una fracción. Reconocer fracciones equivalentes. Amplificar fracciones. Simplificar fracciones hasta obtener la fracción irreducible.

Más detalles

LICEO Nº1 JAVIERA CARRERA 2012 MATEMATICA Benjamín Rojas F. FACTORIZACIÓN

LICEO Nº1 JAVIERA CARRERA 2012 MATEMATICA Benjamín Rojas F. FACTORIZACIÓN LICEO Nº1 JAVIERA CARRERA 2012 MATEMATICA Benjamín Rojas F. FACTORIZACIÓN Factorizar es transformar un número o una expresión algebraica en un producto. Ejemplos: Transformar en un producto el número 6

Más detalles

Potencias y radicales

Potencias y radicales Potencias y radicales Contenidos 1. Radicales Potencias de exponente fraccionario Radicales equivalentes Introducir y extraer factores Cálculo de raíces Reducir a índice común Radicales semejantes. Propiedades

Más detalles

Apuntes de matemáticas 2º ESO Curso 2013-2014. Lenguaje algebraico.

Apuntes de matemáticas 2º ESO Curso 2013-2014. Lenguaje algebraico. Lenguaje algebraico. Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas

Más detalles

UNA ECUACIÓN, SU GRADO Y SU SOLUCIÓN

UNA ECUACIÓN, SU GRADO Y SU SOLUCIÓN 86 _ 087-098.qxd 7//07 : Página 88 IDENTIICAR OBJETIVO UNA ECUACIÓN, SU GRADO Y SU SOLUCIÓN NOMBRE: CURSO: ECHA: Dado el polinomio P(x) x +, ya sabemos cómo se calcula su valor numérico: x P() + x P( )

Más detalles

UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN CURSO PROPEDEÚTICO ÁREA: MATEMÁTICAS

UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN CURSO PROPEDEÚTICO ÁREA: MATEMÁTICAS UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN CURSO PROPEDEÚTICO ÁREA: MATEMÁTICAS TEMA 1. ÁLGEBRA Parte de las Matemáticas que se dedica en sus aspectos más elementales. A

Más detalles

Desigualdades con Valor absoluto

Desigualdades con Valor absoluto Resolver una desigualdad significa encontrar los valores para los cuales la incógnita cumple la condición. Para ver ejemplos de las diferentes desigualdades que hay, haga Click sobre el nombre: Desigualdades

Más detalles

Números Naturales. Cero elemento neutro: = 12 Sucesión fundamental : se obtiene el siguiente número = 9

Números Naturales. Cero elemento neutro: = 12 Sucesión fundamental : se obtiene el siguiente número = 9 Números Naturales Cuando comenzamos a contar los objetos, los años, etc, nos hemos encontrado con los números de forma natural; por eso a este conjunto de números así aprendidos se les denomina números

Más detalles

Guía de Aprendizaje n 7 Plan Biólogo II 2011 LENGUAJE ALGEBRAICO

Guía de Aprendizaje n 7 Plan Biólogo II 2011 LENGUAJE ALGEBRAICO Fuente: Universidad Católica de Chile Guía de Aprendizaje n 7 Plan Biólogo II 2011 LENGUAJE ALGEBRAICO 1. Las letras en Matemática Así como para expresarnos utilizamos el Español, en Matemática se utiliza

Más detalles

RADICALES. Un radical es una expresión de la forma, en la que n y ; con tal que cuando a sea negativo, n ha de ser impar.

RADICALES. Un radical es una expresión de la forma, en la que n y ; con tal que cuando a sea negativo, n ha de ser impar. RADICALES Un radical es una expresión de la forma, en la que n y a ; con tal que cuando a sea negativo, n ha de ser impar. Se puede expresar un radical en forma de potencia: Radicales equivalentes Utilizando

Más detalles

UNIDAD 1: DIVISIBILIDAD Y NÚMEROS ENTEROS

UNIDAD 1: DIVISIBILIDAD Y NÚMEROS ENTEROS UNIDAD 1: DIVISIBILIDAD Y NÚMEROS ENTEROS 1. *Representar números enteros sobre la recta numérica, compararlos y ordenarlos. 2. *Sumar y restar números enteros teniendo en cuenta el signo que presentan.

Más detalles
Sitemap