UNIDAD 5: ÁLGEBRA. Nacho Jiménez ANT ÍNDICE SIG


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "UNIDAD 5: ÁLGEBRA. Nacho Jiménez ANT ÍNDICE SIG"

Transcripción

1 UNIDAD 5: ÁLGEBRA Nacho Jiménez

2 0. Conceptos previos ÍNDICE 1. Para qué sirve el álgebra? 2. Expresiones algebraicas 2.1 Monomios 2.2 Suma y resta de monomios 2.3 Multiplicación de monomios 2.4 División de monomios 3. Polinomios 3.1 Valor numérico 3.2 Suma de polinomios 3.3 Resta de polinomios 3.4 Producto de polinomios 4. Productos notables 4.1 Aplicación de los productos notables 4.2 Extracción de factor común

3 0. CONCEPTOS PREVIOS (I) Propiedades de las operaciones con números PROPIEDAD EJEMPLO EXP. GENERAL SUMA Conmutativa 2+5=5+2 a+b=b+a Asociativa 2+(3+5)=(2+3)+5 a+(b+c)=(a+b)+c 0 es elemento neutro 4+0=4 a+0=a Elemento opuesto 4+(-4)=0 a+(-a)=0 Distributiva suma respecto producto 2 (3+5)= a (b+c)=a b+a c PRODUCTO Conmutativa 2 3=3 2 a b=b a Asociativa 2 (3 5)=(2 3) 5 a (b c)=(a b) c 1 es elemento neutro 4 1=4 a 1=a 0 es elemento absorbente Elemento inverso 4 0=0 a 0=0 3 1 =1 3 a 1 a =1

4 0. CONCEPTOS PREVIOS (II) Supresión de paréntesis precedidos de +/- Si hay un signo + se quita el paréntesis, dejando los signos como están +(3-4+5)=3-4+5 Si hay un signo - se quita el paréntesis, cambiando los signos interiores -(3-4+5)= Propiedades de las potencias Producto de potencias de la misma base: se suman los exponentes Cociente de potencias de la misma base: se restan los exponentes a n a m =a n+m a n a m =an-m

5 1. PARA QUÉ SIRVE EL ÁLGEBRA? (I) Para expresar propiedades aritméticas Ejemplo: propiedad conmutativa del producto el orden de los factores no altera el producto a b = b a Para manejar números de valor indeterminado Un número natural n El siguiente número n+1 El triple del siguiente 3(n+1) El cuadrado del número menos su doble n 2-2n Un número par 2m El siguiente número par 2m+2

6 1. PARA QUÉ SIRVE EL ÁLGEBRA? (II) Para generalizar series numéricas n a n =3n+1 a a a a a Área de un triángulo de base b y altura a b a A= b a 2 Fórmulas Particularizando Área de un triángulo de base 3cm y altura 4cm 4cm 3cm A= = 6cm 2

7 2. EXPRESIONES ALGEBRAICAS Las expresiones algebraicas son expresiones formadas por números y por letras que representan números, relacionados por operaciones aritméticas EJEMPLOS 4x -2xy 2 +3xz -2xy 3 x+y x-y a+3b a-3b n+1 n-1 + x-y x+y Veamos a continuación las expresiones algebraicas más sencillas: LOS MONOMIOS

8 2.1. MONOMIOS (I) Un monomio es el producto indicado de un valor conocido (coeficiente), por uno o varios valores desconocidos representados por letras (parte literal) EJEMPLOS coeficiente 4x -5xy x3 y parte literal GRADO DE UN MONOMIO: Número de factores que forman la parte literal x x y y x x x y Monomio de grado 1 Monomio de grado 3 Monomio de grado 4 NOTA: En el caso de monomios con una sola letra el grado coincide con el exponente de dicha letra. Los números sin letra tienen grado 0.

9 2.1. MONOMIOS (II) VALOR NUMÉRICO DE UN MONOMIO Valor del monomio cuando las letras de la parte literal toman valores concretos EJEMPLOS 4x -5xy x3 y x=2 x=2 y=-3 x=-1 y= EXP. PAR (-3) (-1)3 (-3) -1 EXP. IMPAR MONOMIOS SEMEJANTES Dos monomios son semejantes si sus partes literales son idénticas 4x -2x SEMEJANTES 4x 4y NO SEMEJANTES 5x 2 y SEMEJANTES 4 3 x2 y 5xy x2 y NO SEMEJANTES

10 2.2. SUMA Y RESTA DE MONOMIOS Dos monomios sólo se pueden sumar o restar si son SEMEJANTES. En ese caso se suman o restan los coeficientes y se deja la misma parte literal EJEMPLOS 4x+5x = (4+5) x = 9x -x+2x =(-1+2) x =1x =x 3y 2-8y 2 =(3-8)y 2 =-5y x3 y+ 3 x3 y = 5 3 x3 y La suma se deja indicada 4x+5y -x+2x 2 3y 2-8xy x3 y+ 3 x2 y Si tenemos sumas y restas combinadas con paréntesis, quitamos los paréntesis y sumamos (4x+5x 2-2)-(3x 2 +2x-4) 2x 2 +2x+2 Quitamos paréntesis Sumamos monomios 4x+5x x 2-2x+4 5x 2-3x 2 +4x-2x-2+4 Agrupamos monomios semejantes

11 2.3. MULTIPLICACIÓN DE MONOMIOS La multiplicación de monomios se puede hacer con dos monomios cualesquiera, sean o no semejantes, multiplicando los coeficientes y multiplicando las partes literales. EJEMPLOS 4x 5x = (4 5) x x = 20x 2 -x 2xy =(-1 2) x xy =-2x 2 y RECUERDA Producto de potencias de la misma base: se suman los exponentes 3y 2 (-8y 3 ) =3 (-8) y 2 y 3 =-24y a3 b 3 a4 b = = 4 9 a7 b a 4 b a 3 b El producto de dos monomios es otro monomio cuyo grado es la suma de los grados de los factores 3y 2 Grado 2 5y 4 Grado 4 Producto 3y 2 5y 4 =15y 6 Grado 6

12 2.4. DIVISIÓN DE MONOMIOS La división de monomios se puede hacer con dos monomios cualesquiera, sean o no semejantes, dividiendo los coeficientes y dividiendo las partes literales. EJEMPLOS 8x 5 :4x 3 = (8:4) (x 5 :x 3 )= 2x 2-15x 4 :3x 3 =(-15:3) (x 4 :x 3 ) =-5x 18x 3 :9x 3 = (18:9) (x 3 :x 3 ) = 2x 0 = 2 2x 3 :10x 5 = 2x3 10x 5 = 4xy 3 :2x 2 y 2 = 4xy3 2x 2 y 2 RECUERDA Cociente de potencias de la misma base: se restan los exponentes 2 x x x 2 5 x x x x x = 1 5x x y y y = 2 x x y y = 2y x El cociente de dos monomios puede ser un monomio, un número o una fracción algebraica

13 3. POLINOMIOS Un polinomio es la suma indicada de varios monomios no semejantes a los que se llama términos del polinomio. Si hay dos términos se le llama también binomio y si hay tres términos trinomio. EJEMPLOS 4x+12x 3 x+x 3 y-y -5x 2 +8x 3-7x 4 +8 x+2x 3-3x 2-1 Binomio Trinomio Usualmente ordenamos los monomios de mayor a menor grado Término independiente -7x 4 +8x 3-5x x 3-3x 2 +x-1 GRADO DE UN POLINOMIO: Mayor de los grados de los monomios que lo forman -5x 2 +8x 3-7x 4 +8 Polinomio de grado 4 x 3 +2x 7-3x 4 +8x Polinomio de grado 7

14 3.1. VALOR NUMÉRICO VALOR NUMÉRICO DE UN POLINOMIO Valor del polinomio cuando las letras de la parte literal toman valores concretos EJEMPLOS x 3 +2x 2-3x +2 x= = = 12 x 3 +2x 2-3x +2 x=-1 (-1) 3 +2 (-1) 2-3 (-1)+2 = = 6 x 3 +2x 2-3x +2 x= = = 2 x-2x 3 y-y x=2 y= (-1)-(-1) = = 19 NOTA: Los polinomios se nombran con letras mayúsculas seguidas de la variable o variables entre paréntesis. El valor numérico de un polinomio se representa con su letra y el valor o valores entre paréntesis. A(x)=x 3 +2x 2-3x +2 P(x,y)=x-2x 3 y-y A(2) =12 P(2,-1) =19

15 3.2. SUMA DE POLINOMIOS Para sumar polinomios tendremos en cuenta lo que ya sabemos para la suma de monomios, esto es, que sólo se pueden sumar los monomios semejantes EJEMPLO A(x)=2x 3-3x 2 +6 A(x)+B(x) B(x)=x 2-5x+4 = (2x 3-3x 2 +6) + (x 2-5x+4) = 2x 3-3x 2 +6+x 2-5x+4 = 2x 3 +x 2-3x 2-5x+6+4 Sumamos términos semejantes Quitamos paréntesis Agrupamos términos semejantes 2x 3-2x 2-5x+10 REGLA PRÁCTICA: Para sumar dos o más polinomios se colocan uno bajo el otro, haciendo coincidir, en la misma columna, los monomios semejantes A(x)=2x 3-3x 2 +6 B(x)= x 2-5x+4 A(x)+B(x)=2x 3-2x 2-5x+10

16 3.3. RESTA DE POLINOMIOS OPUESTO DE UN POLINOMIO: Es el polinomio que resulta de cambiar todos los signos de los términos de un polinomio. EJEMPLO EJEMPLOS A(x)=2x 3-3x 2 +6 B(x)=x 2-5x+4 Opuesto Opuesto -A(x)=-2x 3 +3x 2-6 -B(x)=-x 2 +5x-4 Para restar dos polinomios se suma el primero con el opuesto del segundo, es decir, se cambia el signo del sustraendo y se suma con el minuendo. A(x)=2x 3-3x 2 +6 B(x)=x 2-5x+4 A(x)-B(x) A(x)=2x 3-3x B(x)= -x 2 +5x-4 A(x)-B(x)=2x 3-4x 2 +5x+2

17 3.4. PRODUCTO DE POLINOMIOS (I) PRODUCTO DE UN POLINOMIO POR UN MONOMIO: aplicando la propiedad distributiva tenemos varios productos de monomios EJEMPLOS 2 (x 3-4x 2 +5x-1) -3x (x 3-4x 2 +5x-1) x 2 (x 3-4x 2 +5x-1) Propiedad Distributiva Prop. Distrib. Prop. Distrib. 2 x 3-2 4x x-2 1 Multiplicamos los monomios 2x 3-8x 2 +10x-2-3x x 3 -(-3x) 4x 2 +(-3x) 5x-(-3x) 1 Multiplicamos los monomios -3x 4 +12x 3-15x 2 +3x x 2 x 3 -x 2 4x 2 +x 2 5x-x 2 1 Multiplicamos los monomios x 5-4x 4 +5x 3 -x 2

18 3.4. PRODUCTO DE POLINOMIOS (II) PRODUCTO DE DOS POLINOMIOS: se multiplica cada monomio de uno de los factores por todos y cada uno de los monomios del otro factor y se suman los monomios obtenidos, reduciendo los que sean semejantes. EJEMPLOS FORMA 2 FORMA 1 (2x+1) (x 2 -x-1) =2x (x 2 -x-1)+1 (x 2 -x-1) =2x x 2-2x x-2x 1 +1 x 2-1 x-1 1 =2x 3-2x 2-2x+x 2 -x-1 = 2x 3 -x 2-3x -1 x 2 -x-1 2x+1 x 2 -x -1 2x 3-2x 2-2x 2x 3 -x 2-3x-1

19 4. PRODUCTOS NOTABLES (I) CUADRADO DE UNA SUMA es igual al cuadrado del primer sumando, más el doble del producto del primero por el segundo más el cuadrado del segundo sumando. (a+b)²= a+b a+b +ab +b² +a² +ab a²+2ab+b² a + b a + b a² ab ab b² Ejemplos (2+3)²= 2² ² = = 25 = 5² (x+5)²= x²+2 x 5+5² = x²+10x+25 (2x+y²)²= (2x)²+2 2x y²+(y²)² = 4x 2 +4xy 2 +y 4

20 4. PRODUCTOS NOTABLES (II) CUADRADO DE UNA RESTA es igual al cuadrado del primer sumando, menos el doble del producto del primero por el segundo más el cuadrado del segundo sumando. a (a-b)²= a-b a-b -ab +b² +a² -ab a²-2ab+b² (a-b)² a a²-ab b b b² Ejemplos (5-3)²= 5² ² = = 4 = 2² (x-5)²= x²-2 x 5+5² = x²-10x+25 (2x-y²)²= (2x)²-2 2x y²+(y²)² = 4x 2-4xy 2 +y 4

21 4. PRODUCTOS NOTABLES (III) SUMA POR DIFERENCIA: la suma de dos monomios por su diferencia es igual a la diferencia de sus cuadrados (a+b) (a-b)= a+b a-b -ab -b² +a² +ab a² -b² a b (a+b) (a-b) a a²+ab b b² Ejemplos (5-3)(5+3)= 5²-3² = 25-9 = 16 = 2 8 (x+5) (x-5)= x²-5² = x²-25 (2x-y²) (2x+y²)= (2x)²-(y²)² = 4x 2 -y 4

22 4.1 APLICACIÓN DE LOS PRODUCTOS NOTABLES Los productos notables se pueden utilizar para descomponer polinomios en factores y para simplificar fracciones algebraicas. Factorización de polinomios x²+6x+9= 4x²-25= x²+2 x 3+3² CUADRADO DEL PRIMERO DIFERENCIA DE CUADRADOS DOBLE DEL PRIMERO POR EL SEGUNDO (2x)²-5² CUADRADO DEL SEGUNDO = (x+3)² SUMA CUADRADO DE LA SUMA = (2x+5) (2x-5) DIFERENCIA Simplificación de fracciones algebraicas x²-6x+9 x²-9 CUADRADO DEL PRIMERO DOBLE DEL PRIMERO POR EL SEGUNDO CUADRADO DEL SEGUNDO CUADRADO DE LA RESTA x²-2 x 3+3² (x-3)² = = = x²-3² (x+3) (x-3) DIFERENCIA DE CUADRADOS SUMA DIFERENCIA x-3 x+3

23 4.2 Extracción de factor común La extracción de factor común es una aplicación directa de la propiedad distributiva de la suma respecto del producto: a (b+c) = a b + a c 12x 4 y 2 +18x 2 y 2-30x 3 y Descomponemos en factores Dentro del paréntesis queda cada sumando dividido entre el factor común 6x 2 y (2x 2 y +3y-5x) El factor común es el MCD de los coeficientes por las letras comunes al menor exponente con que aparecen Factor común 6x 2 y = x x x x y y x x y y x x x y 2 3 x x y Ejemplos 8x+8y = 8 (x+y) 2x 2 y-8x 3 y 3 = 2x 2 y (1-4xy 2 ) x 4-3x 5 +2x 3 +7x 2 = x 2 (x 2-3x 3 +2x+7) Cuando el factor común coincide con uno de los sumandos en su lugar en la suma queda la unidad

MATEMÁTICAS ÁLGEBRA (TIC)

MATEMÁTICAS ÁLGEBRA (TIC) COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS ÁLGEBRA (TIC) GRADO:8 O A, B DOCENTE: Nubia E. Niño C. FECHA: 23 / 02 / 15 GUÍA UNIFICADA: # 1 5; # 1-6 y 1-7 DESEMPEÑOS:

Más detalles

MONOMIOS Y POLINOMIOS

MONOMIOS Y POLINOMIOS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas y se representan por letras.

Más detalles

MATE IV Serie Álgebra 2015/01/26 NOMENCLATURA ALGEBRAICA

MATE IV Serie Álgebra 2015/01/26 NOMENCLATURA ALGEBRAICA NOMENCLATURA ALGEBRAICA Definición (Término). Es una expresión algebraica que consta de un solo símbolo o de varios símbolos no separados entre sí por el signo + o -. Por ejemplo a, 3b, xy, son términos.

Más detalles

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma. FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto

Más detalles

TEMA 4: EXPRESIONES ALGEBRAICAS.

TEMA 4: EXPRESIONES ALGEBRAICAS. TEMA 4: EXPRESIONES ALGEBRAICAS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. CURSO 2011-2012 Página 1 de 14 Profesor: Manuel González de León Curso

Más detalles

Apuntes de matemáticas 2º ESO Curso 2013-2014. Lenguaje algebraico.

Apuntes de matemáticas 2º ESO Curso 2013-2014. Lenguaje algebraico. Lenguaje algebraico. Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas

Más detalles

I.E.S. Tierra de Ciudad Rodrigo Departamento de Matemáticas TEMA 6. POLINOMIOS

I.E.S. Tierra de Ciudad Rodrigo Departamento de Matemáticas TEMA 6. POLINOMIOS TEMA 6. POLINOMIOS Una expresión algebraica es un conjunto de letras y números unidos por los signos matemáticos. Las expresiones algebraicas surgen de traducir al lenguaje matemático enunciados en los

Más detalles

cómo expresarías?. ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: POLINOMIOS Grupo: 3º A Expresiones algebraicas Álgebra vs Aritmética

cómo expresarías?. ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: POLINOMIOS Grupo: 3º A Expresiones algebraicas Álgebra vs Aritmética 16/01/01 ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: POLINOMIOS Grupo: º A cómo expresarías?. La altura de mi hermano si te digo que mide 10 cm más que mi hermana: El perímetro de un triángulo

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas º ESO 1. Expresiones algebraicas En matemáticas es muy común utilizar letras para expresar un resultado general. Por ejemplo, el área de un b h triángulo es base por altura dividido por dos y se expresa

Más detalles

Se dice que dos monomios son semejantes cuando tienen la misma parte literal

Se dice que dos monomios son semejantes cuando tienen la misma parte literal Expresiones algebraicas 1 MONOMIOS Conceptos Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural.

Más detalles

TEMA 5. Expresiones Algebraicas

TEMA 5. Expresiones Algebraicas TEMA 5 Expresiones Algebraicas 5.1.- Lenguaje Algebraico El lenguaje numérico sirve para expresar operaciones utilizando solamente números. El lenguaje algebraico sirve para expresar situaciones reales

Más detalles

Alumno Fecha Actividad 13 Expresiones algebraicas 1º ESO

Alumno Fecha Actividad 13 Expresiones algebraicas 1º ESO Alumno Fecha Actividad 1 Expresiones algebraicas 1º ESO Las expresiones que resultan de combinar números y letras relacionándolos con las operaciones habituales se llaman expresiones algebraicas y se utilizan

Más detalles

Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales Ejercicios Orden y valor absoluto...

Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales Ejercicios Orden y valor absoluto... ÍNDICE Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales... 3 Ejercicios... 5 Orden y valor absoluto... 6 Ejercicios... 7 Suma de números reales... 9 Reglas

Más detalles

2. EXPRESIONES ALGEBRAICAS

2. EXPRESIONES ALGEBRAICAS 2. EXPRESIONES ALGEBRAICAS Tales como, 2X 2 3X + 4 ax + b Se obtienen a partir de variables como X, Y y Z, constantes como -2, 3, a, b, c, d y cobinadas utilizando la suma, resta, multiplicación, división

Más detalles

PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas

PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas que se resuelven siguiendo Reglas y Fórmulas específicas para cada caso y cuyo resultado puede ser escrito por simple inspección, es decir

Más detalles

1. OPERATORIA ALGEBRAICA 1.1 TÉRMINOS SEMEJANTES

1. OPERATORIA ALGEBRAICA 1.1 TÉRMINOS SEMEJANTES MATEMÁTICA MÓDULO 1 Eje temático: Álgebra 1. OPERATORIA ALGEBRAICA 1.1 TÉRMINOS SEMEJANTES Se denominan términos semejantes a aquellos que tienen la misma parte literal. Por ejemplo: -2a 2 b y 5a 2 b son

Más detalles

RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO

RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO OBJETIVO RECONOCER EL GRADO, EL TÉRMINO Y LOS COEICIENTES DE UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma de monomios, que son los términos del polinomio.

Más detalles

Introducción al Álgebra

Introducción al Álgebra Capítulo 3 Introducción al Álgebra L a palabra álgebra deriva del nombre del libro Al-jebr Al-muqābāla escrito en el año 825 D.C. por el matemático y astrónomo musulman Mohamad ibn Mūsa Al-Khwārizmī. El

Más detalles

UNIDAD I FUNDAMENTOS BÁSICOS

UNIDAD I FUNDAMENTOS BÁSICOS República Bolivariana de Venezuela Universidad Alonso de Ojeda Administración Mención Gerencia y Mercadeo UNIDAD I FUNDAMENTOS BÁSICOS Elaborado por: Ing. Ronny Altuve Ciudad Ojeda, Mayo 2016 ÁLGEBRA Es

Más detalles

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA. POLINOMIOS Y FRACCIONES ALGEBRAICAS.. Repaso de polinomios - Epresión algebraica. Valor numérico - Polinomios. Operaciones con polinomios.. Identidades notables - Cuadrado de una suma de una diferencia

Más detalles

Curso º ESO. UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón

Curso º ESO. UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón 2º ESO UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón OBJETIVOS CONTENIDOS PROCEDIMIENTOS Lenguaje algebraico. Normas y Traducción

Más detalles

DESARROLLO D) 4. para a = 1 y b = 2 (a 2 + b 2 )(2a 3b 2 ) es:

DESARROLLO D) 4. para a = 1 y b = 2 (a 2 + b 2 )(2a 3b 2 ) es: ENCUENTRO # 10 TEMA:Operaciones con polinomios CONTENIDOS: 1. Multiplicación de polinomios. 2. Productos notables. DESARROLLO Ejercicio Reto x 2 1. Al racionalizar el denominador de la fracción 3 + se

Más detalles

Los números enteros. Dado que los enteros contienen los enteros positivos, se considera a los números naturales son un subconjunto de los enteros.

Los números enteros. Dado que los enteros contienen los enteros positivos, se considera a los números naturales son un subconjunto de los enteros. Los números enteros Con los números naturales no era posible realizar diferencias donde el minuendo era menor que el que el sustraendo, pero en la vida nos encontramos con operaciones de este tipo donde

Más detalles

Matemáticas Universitarias

Matemáticas Universitarias Matemáticas Universitarias 1 Sesión No. 2 Nombre: Expresiones algebraicas y sus operaciones Objetivo de la asignatura: En esta sesión el estudiante aplicará las operaciones básicas como suma, resta, multiplicación

Más detalles

Expresiones algebraicas

Expresiones algebraicas Epresiones algebraicas Matemáticas I 1 Epresiones algebraicas Epresiones algebraicas. Monomios y polinomios. Monomios y polinomios. Una epresión algebraica es una combinación de letras, números y signos

Más detalles

POLINOMIOS Y FRACCIONES ALGEBRAICAS

POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS Monomio: Monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. 2x

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Una epresión algebraica es aquella en la que se operan números conocidos y números desconocidos representados por las letras a, b, c,, y, z,..., que se denominan

Más detalles

RESUMEN ALGEBRA BÁSICA

RESUMEN ALGEBRA BÁSICA RESUMEN ALGEBRA BÁSICA TERMINO ALGEBRAICO: Es una expresión matemática que consta de un producto (o cociente) de un número con una variable elevado a un exponente (o con varias variables). TÉRMINO ALGEBRAICO

Más detalles

= RESP = + 7 se suman los del mismo signo 3 3 = 6 se suman los del mismo signo

= RESP = + 7 se suman los del mismo signo 3 3 = 6 se suman los del mismo signo SUMA Y RESTA DE NUMEROS ENTEROS y ALGEBRAICOS A) SUMA Y RESTA 3 + 2 + 5 3 = RESP + 1 2 + 5 = + 7 se suman los del mismo signo 3 3 = 6 se suman los del mismo signo + 7 6 = + 1 se restan signos contrarios

Más detalles

; En este término algebraico, tenemos que 3 es el factor numérico y el coeficiente literal.

; En este término algebraico, tenemos que 3 es el factor numérico y el coeficiente literal. Álgebra Término algebraico: es el producto y/o división de una o más variables (factor literal) y un coeficiente o factor numérico. Por ejemplo: el cálculo del área de un triángulo la rapidez media ; En

Más detalles

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las

Más detalles

ALGEBRA. Término algebraico Coeficiente numérico Parte literal

ALGEBRA. Término algebraico Coeficiente numérico Parte literal ALGEBRA La importancia del álgebra radica en que constituye el cimiento de casi todas las ramas de la matemática; es una poderosa herramienta para desarrollar el pensamiento analítico. Con la ayuda del

Más detalles

Representación Gráfica (recta numérica)

Representación Gráfica (recta numérica) NÚMEROS NATURALES ( N ) Representación Gráfica (recta numérica) 0 1 2 3 4 R Mediante un punto negro representamos el 1, el 3 y el 4 NÚMEROS ENTEROS ( Z ) - 2-1 0 1 2 R Mediante un punto negro representamos

Más detalles

Mó duló 04: Á lgebra Elemental I

Mó duló 04: Á lgebra Elemental I INTERNADO MATEMÁTICA 016 Guía para el Estudiante Mó duló 04: Á lgebra Elemental I Objetivo: Identificar y utilizar conceptos matemáticos asociados al estudio del álgebra elemental. Problema 1 La edad de

Más detalles

Contenido: 1. Definición y clasificación. Polinomios.

Contenido: 1. Definición y clasificación. Polinomios. Polinomios. Contenido:. Definición y clasificación.. Operaciones.. Simplificación. 4. Productos notables.. Factorización. 6. Completar cuadrados. 7. Nociones de despeje.. Definición y clasificación Definición.

Más detalles

Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto

Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto En esta unidad vas a comenzar el estudio del álgebra, el lenguaje de las matemáticas. Vas a aprender

Más detalles

Suma de números enteros

Suma de números enteros NÚMEROS ENTEROS. RESUMEN Los números enteros son del tipo: = {... 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5...} Es decir, los naturales, sus opuestos (negativos) y el cero. Valor absoluto El valor absoluto de un

Más detalles

Expresiones algebraicas

Expresiones algebraicas Expresiones algebraicas Una expresión algebraica es una combinación de letras y números relacionadas por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las

Más detalles

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 1º ESO. (2ª parte)

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 1º ESO. (2ª parte) TRABAJO DE MATEMÁTICAS PENDIENTES DE 1º ESO. (2ª parte) NÚMEROS RACIONALES REDUCCIÓN DE FRACCIONES AL MISMO DENOMINADOR Para reducir varias fracciones al mismo denominador se siguen los siguientes pasos:

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION

INSTITUCION EDUCATIVA LA PRESENTACION INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: HUGO HERNAN BEDOYA Y LUIS LOPEZ TIPO DE GUIA: NIVELACION PERIODO GRADO FECHA DURACION 8 A/B Abril

Más detalles

Factorización ecuación identidad condicional término coeficiente monomio binomio trinomio polinomio grado ax3

Factorización ecuación identidad condicional término coeficiente monomio binomio trinomio polinomio grado ax3 Factorización Para entender la operación algebraica llamada factorización es preciso repasar los siguientes conceptos: Cualquier expresión que incluya la relación de igualdad (=) se llama ecuación. Una

Más detalles

COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS. 1º ESO

COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS. 1º ESO COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS. º ESO RELACIÓN 5: ALGEBRA Lenguaje algebraico, monomios polinomios EXPRESIÓN ALGEBRAICA Es un conjunto de números letras

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones algebraicas: bac,

Más detalles

Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Sec. 5.1: Polinomios

Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Sec. 5.1: Polinomios Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Sec. 5.1: Polinomios Prof. Caroline Rodríguez Martínez Polinomios Un polinomio es un solo término o la suma de dos o más términos se compone

Más detalles

La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes.

La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes. Suma de monomios Sólo podemos sumar monomios semejantes. La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes. ax n + bx n = (a + b)x

Más detalles

Números Naturales. Cero elemento neutro: = 12 Sucesión fundamental : se obtiene el siguiente número = 9

Números Naturales. Cero elemento neutro: = 12 Sucesión fundamental : se obtiene el siguiente número = 9 Números Naturales Cuando comenzamos a contar los objetos, los años, etc, nos hemos encontrado con los números de forma natural; por eso a este conjunto de números así aprendidos se les denomina números

Más detalles

UNIDAD DE APRENDIZAJE I

UNIDAD DE APRENDIZAJE I UNIDAD DE APRENDIZAJE I Saberes procedimentales Interpreta y utiliza correctamente el lenguaje simbólico para el manejo de expresiones algebraicas. 2. Identifica operaciones básicas con expresiones algebraicas.

Más detalles

Qué son los monomios?

Qué son los monomios? Qué son los monomios? Recordemos qué es una expresión algebraica. Definición Una expresión algebraica es aquella en la que se utilizan letras, números y signos de operaciones. Si se observan las siguientes

Más detalles

GUIA ALGEBRA PARTE I. Ejercicios básicos de aritmética EJERCICIOS

GUIA ALGEBRA PARTE I. Ejercicios básicos de aritmética EJERCICIOS 1 GUIA ALGEBRA PARTE I Ejercicios básicos de aritmética QUEBRADOS Fracciones mixtas ejemplo 3 4/5 Una fracción mixta es un número entero y una fracción combinados, como 1 3 / 4. Fracciones propias ejemplo

Más detalles

Tema 6 Lenguaje Algebraico. Ecuaciones

Tema 6 Lenguaje Algebraico. Ecuaciones Tema 6 Lenguaje Algebraico. Ecuaciones 1. El álgebra El álgebra es una rama de las matemáticas que emplea números y letras con las operaciones aritméticas de sumar, restar, multiplicar, dividir, potencias

Más detalles

SERIE INTRODUCTORIA. REPASO DE ALGEBRA.

SERIE INTRODUCTORIA. REPASO DE ALGEBRA. SERIE INTRODUCTORIA. REPASO DE ALGEBRA. 1.- REDUCCION DE TÉRMINOS SEMEJANTES. Recuerde que los términos semejantes son aquellos que tienen las mismas letras con los mismos exponentes. Ejemplos: *7m; 5m

Más detalles

UNIDAD 2. Lenguaje algebraico

UNIDAD 2. Lenguaje algebraico Matemática UNIDAD 2. Lenguaje algebraico 1 Medio GUÍA N 1 Evaluación de Expresiones Algebraicas Conceptos básicos El lenguaje algebraico es una de las principales formas del lenguaje matemático y es mucho

Más detalles

DEL LENGUAJE DE LOS NÚMEROS AL LEGUAJE ALGEBRAICO.

DEL LENGUAJE DE LOS NÚMEROS AL LEGUAJE ALGEBRAICO. DEL LENGUAJE DE LOS NÚMEROS AL LEGUAJE ALGEBRAICO. En ocasiones, en matemáticas, necesitamos operar con números desconocidos. Para ello, se toman letras para representar esas cantidades desconocidas o

Más detalles

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite

Más detalles

Unidad 1: Los números enteros Pag. 3 Unidad 2: Potencias y raíces.pag. 33 Unidad 3: Fracciones y decimales..pag. 64 Unidad 4: Expresiones algebraicas

Unidad 1: Los números enteros Pag. 3 Unidad 2: Potencias y raíces.pag. 33 Unidad 3: Fracciones y decimales..pag. 64 Unidad 4: Expresiones algebraicas Unidad 1: Los números enteros Pag. 3 Unidad 2: Potencias y raíces.pag. 33 Unidad 3: Fracciones y decimales..pag. 64 Unidad 4: Expresiones algebraicas Pag. 91 Unidad 5: Ecuaciones Pag. 130 Los números enteros

Más detalles

Tema 3. Polinomios y fracciones algebraicas

Tema 3. Polinomios y fracciones algebraicas Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones.. Operaciones con monomios. Polinomios.. Definiciones.. Operaciones con polinomios. Factorización de un polinomio.. Teorema del resto.

Más detalles

PRODUCTOS NOTABLES. Definición: son aquellos productos cuyo desarrollo se conocen fácilmente por simple observación. Y son:

PRODUCTOS NOTABLES. Definición: son aquellos productos cuyo desarrollo se conocen fácilmente por simple observación. Y son: PRODUCTOS NOTABLES Definición: son aquellos productos cuyo desarrollo se conocen fácilmente por simple observación. Y son: Cuadrado de la suma de dos cantidades Cuadrado de la diferencia de dos cantidades

Más detalles

POLINOMIOS. Un polinomio es una expresión algebraica (conjunto de. números y letras que representan números, conectados por las

POLINOMIOS. Un polinomio es una expresión algebraica (conjunto de. números y letras que representan números, conectados por las POLINOMIOS Teoría 1.- Qué es un polinomio? Un polinomio es una expresión algebraica (conjunto de números y letras que representan números, conectados por las operaciones de suma, resta, multiplicación,

Más detalles

NOCIONES DE ÁLGEBRA. Autoras. Beatriz Elena Correa Restrepo Luz Elena Muñoz Sierra Celia Villegas de Arias

NOCIONES DE ÁLGEBRA. Autoras. Beatriz Elena Correa Restrepo Luz Elena Muñoz Sierra Celia Villegas de Arias NOCIONES DE ÁLGEBRA Autoras Beatriz Elena Correa Restrepo Luz Elena Muñoz Sierra Celia Villegas de Arias ESCUELA DE MATEMÁTICAS UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MEDELLÍN Tabla de Contenido Lección

Más detalles

RESUMEN DE CONCEPTOS

RESUMEN DE CONCEPTOS RESUMEN DE CONCEPTOS 1º ESO MATEMÁTICAS NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número exacto de veces. Ejemplo: 16 es múltiplo

Más detalles

Institución Educativa Distrital Madre Laura

Institución Educativa Distrital Madre Laura Una fracción algebraica es una expresión fraccionaria en la que numerador y denominador son polinomios. Son fracciones algebraicas: Las fracciones algebraicas tienen un comportamiento similar a las fracciones

Más detalles

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +...

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 x 1 + a 0 Siendo a n, a n -1... a 1, a o números,

Más detalles

(infinito) indica una sucesión indefinida de números. Al número asociado a cada punto lo llamaremos COORDENADA.

(infinito) indica una sucesión indefinida de números. Al número asociado a cada punto lo llamaremos COORDENADA. CLASIFICACION DE LOS NUMEROS EL CONJUNTO DE LOS NUMEROS NATURALES El conjunto de los números naturales es el más antiguo y se usa primordialmente para contar. Los números naturales forman una colección

Más detalles

UNIDAD DOS FACTORIZACIÓN

UNIDAD DOS FACTORIZACIÓN UNIDAD DOS FACTORIZACIÓN Factorizar quiere decir descomponer en factores, los factores son divisores de una expresión que, multiplicados entre sí, dan como resultado la primera expresión. FACTOR COMÚN

Más detalles

open green road Guía Matemática PRODUCTOS NOTABLES profesor: Nicolás Melgarejo .co

open green road Guía Matemática PRODUCTOS NOTABLES profesor: Nicolás Melgarejo .co Guía Matemática PRODUCTOS NOTABLES profesor: Nicolás Melgarejo.co 1. Introducción Es usual en matemática intentar simplificar todas las expresiones y definiciones, utilizando el mínimo de elementos o símbolos

Más detalles

CLASIFICACION DE LAS EXPRESIONES ALGEBRAICAS. Las expresiones algebraicas se clasifican en: a) racionales; b) irracionales.

CLASIFICACION DE LAS EXPRESIONES ALGEBRAICAS. Las expresiones algebraicas se clasifican en: a) racionales; b) irracionales. Capítulo 3.-EXPRESIONES ALGEBRAICAS OBJETIVOS INSTRUCTIVOS Que el alumno: Distinga la clasificación de las expresiones algebraicas. Aprenda las operaciones con monomios y polinomios y sus aplicaciones

Más detalles

CASO I: FACTORIZACION DE BINOMIOS

CASO I: FACTORIZACION DE BINOMIOS CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS: MATEMATICAS ACTIVIDAD ACADEMICA: FUNDAMENTOS MATEMATICOS DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD N : FACTORIZACION

Más detalles

APUNTES DE FUNDAMENTOS DE MATEMATICA. CASO I: Cuando todos los términos de un polinomio tienen un factor común.

APUNTES DE FUNDAMENTOS DE MATEMATICA. CASO I: Cuando todos los términos de un polinomio tienen un factor común. FACTORIZACION DE POLINOMIOS. CASO I: Cuando todos los términos de un polinomio tienen un factor común. Cuando se tiene una expresión de dos o más términos algebraicos y si se presenta algún término común,

Más detalles

POLINOMIOS En esta unidad aprenderás a:

POLINOMIOS En esta unidad aprenderás a: POLINOMIOS En esta unidad aprenderás a: Reconocer polinomios y calcular su valor numérico Realizar operaciones con polinomios. Manejar la regla de Ruffini y el teorema del resto para encontrar las raíces

Más detalles

. 1. Expresiones algebraicas y reducción Producto y cociente de expresiones algebraicas Productos Notables...

. 1. Expresiones algebraicas y reducción Producto y cociente de expresiones algebraicas Productos Notables... . 1 . 1. Epresiones algebraicas y reducción... 0. Producto y cociente de epresiones algebraicas... 07. Productos Notables.... 1 4. Factorización.... 17 5. Simplificación de fracciones algebraicas.... 6

Más detalles

Sumar y restar radicales

Sumar y restar radicales Sumar y restar radicales Radicales semejantes Decimos que dos radicales son semejantes si tienen el mismo índice y el mismo radicando. Ejemplos: Los siguientes pares de radicales son semejantes. 5 y y

Más detalles

Factorización de Polinomios. Profesora Ericka Salas González

Factorización de Polinomios. Profesora Ericka Salas González Factorización de Polinomios Profesora Ericka Salas González 19 de marzo de 2006 Índice general 0.1. QUE ES FACTORIZAR UN POLINOMIO..... 2 0.1.1. Factor............................ 2 0.1.2. Factorizar..........................

Más detalles

5. Producto de dos binomios de la forma: ( ax + c)( bx d )

5. Producto de dos binomios de la forma: ( ax + c)( bx d ) PRODUCTOS NOTABLES Y FACTORIZACIÓN. Productos Notables: Son polinomios que se obtienen de la multiplicación entre dos o más polinomios que poseen características especiales o expresiones particulares,

Más detalles

FACTORIZACION FACTORIZACIÓN. Factorizar un número consiste en expresarlo como producto de dos de sus divisores.

FACTORIZACION FACTORIZACIÓN. Factorizar un número consiste en expresarlo como producto de dos de sus divisores. -PA-0 FACTORIZACION V0 Página de 9 NOCION: FACTORIZACIÓN Factorizar un número consiste en epresarlo como producto de dos de sus divisores. Ejemplo: Factoriza 0 en dos de sus divisores :, es decir 0 = Y

Más detalles

Matemáticas 2º E.S.P.A. Pág.1 C.E.P.A. Plus Ultra. Logroño

Matemáticas 2º E.S.P.A. Pág.1 C.E.P.A. Plus Ultra. Logroño ALGEBRA 1. LETRAS EN VEZ DE NÚMEROS En muchas tareas de las matemáticas es preciso trabajar con números de valor desconocido o indeterminado. En esos casos, los números se representan por letras y se operan

Más detalles

Polinomios. Un polinomio tiene la siguiente forma general: Donde: y las potencias de las variables descienden en valor

Polinomios. Un polinomio tiene la siguiente forma general: Donde: y las potencias de las variables descienden en valor Polinomios Polinomios Definición: Un polinomio es una expresión algebraica que cumple con las siguientes condiciones: Ningún término de la expresión tiene un denominador que contiene variables Ningún término

Más detalles

Se llama factores o divisores, a las expresiones algebraicas que multiplicadas entre sí, dan como producto la primera expresión.

Se llama factores o divisores, a las expresiones algebraicas que multiplicadas entre sí, dan como producto la primera expresión. FACTORIZACION Se llama factores o divisores, a las expresiones algebraicas que multiplicadas entre sí, dan como producto la primera expresión. Al proceso de encontrar los factores o divisores a partir

Más detalles

Factorización - Álgebra

Factorización - Álgebra Factorización - Álgebra Ana María Beltrán Docente Matemáticas Febrero 4 de 2013 1 Qué es factorizar? Definición 1. Factorizar un polinomio es representarlo mediante el producto de otros polinomios de menor

Más detalles

LICEO Nº1 JAVIERA CARRERA 2012 MATEMATICA Benjamín Rojas F. FACTORIZACIÓN

LICEO Nº1 JAVIERA CARRERA 2012 MATEMATICA Benjamín Rojas F. FACTORIZACIÓN LICEO Nº1 JAVIERA CARRERA 2012 MATEMATICA Benjamín Rojas F. FACTORIZACIÓN Factorizar es transformar un número o una expresión algebraica en un producto. Ejemplos: Transformar en un producto el número 6

Más detalles

LA FACTORIZACIÓN COMO HERRAMIENTA PARA LA SIMPLIFICACIÓN DE EXPRESIONES ALGEBRAICAS.

LA FACTORIZACIÓN COMO HERRAMIENTA PARA LA SIMPLIFICACIÓN DE EXPRESIONES ALGEBRAICAS. LA FACTORIZACIÓN COMO HERRAMIENTA PARA LA SIMPLIFICACIÓN DE EXPRESIONES ALGEBRAICAS. Material adaptado con fines instruccionales por Teresa Gómez, de: Ochoa, A., González N., Lorenzo J. y Gómez T. (008)

Más detalles

Banco de reactivos de Álgebra I

Banco de reactivos de Álgebra I Banco de reactivos de Álgebra I Compilación: Ochoa Cruz Rita Julio de 006 Temario. Unidad I: El campo de los números reales. Conjunto y conjuntos de números. Orden y distancia. Valor absoluto 4. Operaciones

Más detalles

Uniboyacá GUÍA DE APRENDIZAJE NO 7. Psicología e Ingeniería Ambiental

Uniboyacá GUÍA DE APRENDIZAJE NO 7. Psicología e Ingeniería Ambiental Uniboyacá GUÍA DE APRENDIZAJE NO 7 1. IDENTIFICACIÓN Programa académico Psicología e Ingeniería Ambiental Actividad académica o curso Matemáticas básicas Semestre Segundo de 2012 Actividad de aprendizaje

Más detalles

A)2011 B)2012 B)2013 D)2014 E)2015. C) a5 +b 5

A)2011 B)2012 B)2013 D)2014 E)2015. C) a5 +b 5 ENCUENTRO # 6 TEMA: Fracciones algebraicas CONTENIDOS:. Máximo común divisor 2. Mínimo común múltiplo 3. Simplificación de fracciones algebraicas 4. Suma de fracciones algebraicas 5. Resta de fracciones

Más detalles

Guía de Aprendizaje n 7 Plan Biólogo II 2011 LENGUAJE ALGEBRAICO

Guía de Aprendizaje n 7 Plan Biólogo II 2011 LENGUAJE ALGEBRAICO Fuente: Universidad Católica de Chile Guía de Aprendizaje n 7 Plan Biólogo II 2011 LENGUAJE ALGEBRAICO 1. Las letras en Matemática Así como para expresarnos utilizamos el Español, en Matemática se utiliza

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 75 PRACTICA Operaciones con polinomios Efectúa las operaciones y simplifica las siguientes epresiones: ( ) ( ) ( ) ( ) ( ) 6( ) 4( 4) ( ) ( 5) ( ) ( ) ( ) 9 ( 4 ) 9 4 4 4 5 8 ( ) ( ) 6( ) 6

Más detalles

Expresiones algebraicas (1º ESO)

Expresiones algebraicas (1º ESO) Epresiones algebraicas (º ESO) Lenguaje numérico y lenguaje algebraico. El lenguaje en el que intervienen números y signos de operaciones se denomina lenguaje numérico. Lenguaje usual Lenguaje numérico

Más detalles

EL LENGUAJE ALGEBRAICO

EL LENGUAJE ALGEBRAICO TEMA 5 EL LENGUAJE ALGEBRAICO ÁLGEBRA, EL ARTE DE LA COSA Como casi todas las palabras actuales que empiezan por al, el término álgebra tiene origen árabe. Se lo debemos a un matemático llamado Al-Khwarizmi,

Más detalles

Una expresión algebraica es una combinación de números y letras combinados mediante las operaciones matemáticas.

Una expresión algebraica es una combinación de números y letras combinados mediante las operaciones matemáticas. TEMA 6 EXPRESIONES ALGEBRAICAS Una expresión algebraica es una combinación de números y letras combinados mediante las operaciones matemáticas. Ejemplo: 2 x, 2 a + 3, m (n - 3),... Usamos las expresiones

Más detalles

LOS NUMEROS IRRACIONALES Y SU REPRESENTACIÓN EN LA RECTA NUMERICA

LOS NUMEROS IRRACIONALES Y SU REPRESENTACIÓN EN LA RECTA NUMERICA GUIA Nº 1: LOS NÚMEROS REALES 1 GRADO: 8º PROFESORA: Eblin Martínez M. ESTUDIANTE: PERIODO: I DURACIÓN: 20 Hrs LOGRO: Realizo operaciones con números naturales, enteros, racionales e irracionales. INDICADORES

Más detalles

1 of 18 10/25/2011 6:42 AM

1 of 18 10/25/2011 6:42 AM Prof. Anneliesse SánchezDepartamento de MatemáticasUniversidad de Puerto Rico en AreciboEn esta sección discutiremos Expresiones algebraicas y polinomios. Discutiremos los siguientes tópicos: Introducción

Más detalles

Tema 1: NUMEROS ENTEROS

Tema 1: NUMEROS ENTEROS COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS 1º ESO. NÚMEROS ENTEROS Tema 1: NUMEROS ENTEROS Los números enteros (representados por la letra Z), son un conjunto de número

Más detalles

Guía de Estudios de Algebra

Guía de Estudios de Algebra Guía de Estudios de Algebra Licenciatura en Optometría ALTUZAR INGENERIA Índice Presentación... 3 Propósito... 3 Criterios de Evaluación... 3 Bloque Uno: Fundamentos algebraicos... 4 Propósito... 4 Actividades

Más detalles

Operaciones con monomios y polinomios

Operaciones con monomios y polinomios Operaciones con monomios y polinomios Para las operaciones algebraicas se debe de tener en cuenta que existen dos formas para representar cantidades las cuales son números o letras. Al representar una

Más detalles

RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO

RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO 2015-2016 UNIDAD 1: NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número

Más detalles

Qué diferencia observas entre los primeros cinco ejemplos que son polinomios y estos dos que no lo son?

Qué diferencia observas entre los primeros cinco ejemplos que son polinomios y estos dos que no lo son? POLINOMIOS Definición: Un polinomio en la variable x es una expresión algebraica formada solamente por la suma de términos de la forma ax n, donde a es cualquier número y n es un número entero no negativo.

Más detalles

Ficha de Repaso: Lenguaje Algebraico

Ficha de Repaso: Lenguaje Algebraico Ficha de Repaso: Lenguaje Algebraico 1º) Traduce las siguientes afirmaciones al lenguaje algebraico: a) El doble de un número b) El cubo de un número c) El cuadrado de un número menos su doble d) Un número

Más detalles

UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN CURSO PROPEDEÚTICO ÁREA: MATEMÁTICAS

UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN CURSO PROPEDEÚTICO ÁREA: MATEMÁTICAS UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE CONTADURÍA Y ADMINISTRACIÓN CURSO PROPEDEÚTICO ÁREA: MATEMÁTICAS TEMA 1. ÁLGEBRA Parte de las Matemáticas que se dedica en sus aspectos más elementales. A

Más detalles

Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios.

Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios. Productos notables Sabemos que se llama producto al resultado de una multiplicación. También sabemos que los valores que se multiplican se llaman factores. Se llama productos notables a ciertas expresiones

Más detalles

INSTITUTO VALLADOLID PREPARATORIA página 67

INSTITUTO VALLADOLID PREPARATORIA página 67 INSTITUTO VALLADOLID PREPARATORIA página 67 página 68 MULTIPLICACIÓN La multiplicación, a partir de su definición original, representa o es una suma abreviada. Por ejemplo, + + + +, se abrevia con 5. De

Más detalles

TEMA 4: LAS FRACCIONES

TEMA 4: LAS FRACCIONES TEMA : LAS FRACCIONES Hasta ahora has trabajado con números naturales, enteros y decimales, pero sigue habiendo situaciones que no podemos expresar con estos números, por ejemplo, cuando decimos: Medio

Más detalles
Sitemap