Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto"

Transcripción

1 Ámbito Científico-Tecnológico Módulo III Bloque 3 Unidad 3 Las letras y los números: un cóctel perfecto En esta unidad vas a comenzar el estudio del álgebra, el lenguaje de las matemáticas. Vas a aprender a utilizar las letras para trabajar con ellas como si fueran valores conocidos. Esta parte de las matemáticas es muy útil y enseguida lo descubrirás. Ahora familiarízate con las expresiones algebraicas en su conjunto, practica las operaciones básicas que se pueden hacer con ellas y pronto verás su utilidad. Adelante!.

2 Índice 1. Expresiones algebraicas Monomios Operaciones con monomios Polinomios Operaciones con polinomios Identidades notables... 8 Glosario... 9 Actividades... 9 Soluciones a los practica Bibliografía... 11

3 1. Expresiones algebraicas Muchas veces en matemáticas tenemos que trabajar con valores desconocidos. En estos casos los números que no conocemos los representamos mediante letras y se llaman incógnitas. Estamos ante el álgebra (parte de las matemáticas que nos permite estudiar y trabajar con expresiones en las que aparecen números y letras relacionados con las operaciones matemáticas). Cierto es que al principio cuesta un poco traducir enunciados del lenguaje escrito o hablado al algebraico, pero con un poco de práctica enseguida lo dominarás. Aquí tienes unos ejemplos en donde al número desconocido o incógnita lo representamos mediante la letra x. Ejemplos: Lenguaje hablado o escrito Lenguaje algebraico El doble de un número 2x El triple de un número más 8 unidades 3x 8 El quíntuplo de un número menos el doble de ese mismo número 5x 2x La tercera parte de un número x/3 El producto de un número y su siguiente x(x + 1) 1 Escribe en lenguaje algebraico estos enunciados: El triple de un número menos cinco unidades Un número más su cuádruplo La mitad de un número más la tercera parte del mismo número La mitad de la suma de dos números distintos El cuadrado de un número menos su tercera parte 2. Monomios Un monomio es una expresión algebraica (consta de números y letras que se multiplican). Tiene dos partes. El coeficiente o número y la parte literal o las letras. Imagen: Matemáticas y Tecnología. Gobierno de Aragón Ejemplos: 5x 2 2xy 3 4xy 2 z 4 x 3 3x

4 Grado de un monomio: Se llama grado de un monomio a la suma de los exponentes de la parte literal. Ejemplo: -6x 3 y 3 z Grado del monomio: = 7 (la z tiene exponente 1) Monomio Grado Coeficiente Parte literal 5 2 x 2 y 3 8 x xyz x 2 y Monomios semejantes son aquellos que tienen la misma parte literal. Ejemplo: 2x 2 y y -7x 2 y son semejantes. 4x 3 y 4x 4 no son semejantes 2 Completa la tabla: Monomios Grado Coeficiente Parte literal -5x 6x 2 y 3 z 2-6/7x 5 z 8x 5 y 6 x Operaciones con monomios Suma y resta de monomios. Para poder sumar o restar monomios, éstos han de ser semejantes. De esta manera, sumamos o restamos los coeficientes y dejamos la parte literal. Ejemplos: 3x 2 y + 8x 2 y -5x 2 y = 6x 2 y 6x 2-5x 2 +10x 2 = 11x 2 Multiplicación de monomios Para multiplicar monomios procedemos de la siguiente forma: el coeficiente es la multiplicación de los coeficientes y la parte literal será el producto de ambas partes literales (multiplicaremos las potencias de misma base). Recordatorio: Repasa lo que has aprendido respecto a la multiplicación y división de potencias con la misma base. Te será muy útil ahora.

5 Ejemplos: 3x 7x = 3 7 x x = 21x 2 5x ( 2 x 3 ) = 5 ( 2) x x 3 = 10 x 4 4x 2 y 3 6x 3 y 3 z = 4 6 x 2 x 3 y 3 y 3 z = 24x 5 y 6 z División de monomios Para dividir monomios se hace de forma parecida a la multiplicación: el coeficiente es la división de los coeficientes y la parte literal será la división de ambas partes literales (dividiremos las potencias que tengan la misma base). Lo mejor es simplificar las expresiones algebraicas. Ejemplos: 3 Realiza estas operaciones con monomios: 5x 2 7x 2 = 2xy 3xy 4 = (-4x 2 y 2 ) : (-2x 2 y) = 8x 2 y 3 + 2x 2 y 3 = (-5)x 5 (-4)x 5 = x 8 : (-3x 3 ) = -x 3 y 4 +3x 3 y 4 = 2x 2 y 3 4xy 5 z 7x 3 z 4 = 10x 3 y4z 2 : 5xyz = 3. Polinomios Un polinomio es una expresión algebraica compuesta por dos o más monomios. Se suelen escribir colocando sus términos ordenados por orden descendente de su grado. Ejemplos: 5x 3 2x 2 + 4x + 8 8x 6 + 5x 4-3x2 + x Grado de un polinomio: es el mayor grado de los monomios que lo componen. El término independiente de un polinomio es el monomio de grado cero, es decir, el que no tiene letras Ejemplos: Polinomio Grado Término independiente 2x x 6 + 5x 4 3x 2 + x 6 No tiene 5x 3 2x 2 + 4x x 10 x 4 9x Valor numérico de un polinomio: es el valor que se obtiene de sustituir la incógnita (letra) por el número correspondiente y realizar las operaciones.

6 Ejemplo: Calcula el valor numérico del polinomio P(x) = 5x 3 2x 2 + 4x + 8 para x = 1 Donde está la x, ponemos el valor 1 P(1) = Hacemos las operaciones El valor del polinomio P(x) para x = 1 es Ejemplo: Calcula el valor numérico del polinomio P(x) = 5x 3 2x 2 + 4x +8 para x = -1 Donde está la x, ponemos el valor -1 P(-1) = 5 (-1) 3 2 (-1) (-1) + 8 Hacemos las operaciones = -3 El valor del polinomio P(x) para x = 1 es Halla el valor numérico de P(x) = x 3-2x 2 + 6x - 3 para x = 2 ; x = -2 y x = Operaciones con polinomios Suma de polinomios Para sumar dos o más polinomios, se agrupan los monomios semejantes y se simplifican. Ejemplo: Vamos a sumar los polinomios P(x)= 9x 3 6x 10 y Q(x)= 12x 3 + 2x Colocamos los polinomios enfrentando los 9x 3-6x -10 monomios semejantes. -12x 3 +2x 2 +8 Sumamos -3x 3 +2x 2-6x - 2 Resta de polinomios Antes de nada, debes saber a qué se llama opuesto de un polinomio. Es el que resulta de cambiar de signo todos sus monomios. Ejemplo: El opuesto de P(x)= 9x 3 6x 10 es -P(x)= -9x 3 +6x + 10 Pues bien, para restar polinomios, se suma al primero el opuesto del segundo. Ejemplo: Vamos a restar los polinomios Q(x)= -12x 3 + 2x menos P(x)= 9x 3-6x - 10 Primero hallamos el opuesto de P(x). -P(x) = -9x 3 + 6x +10 Seguidamente sumamos Q(x) con el opuesto P(x) -12x 3 +2x 2 +8 como ya sabemos. -9x 3 +6x +10 Sumamos. -21x 3 +2x 2 +6x +18

7 5. Dados los polinomios: P(x) = 3x 2 3x + 3 Q(x) = x 4 + 2x 3 x + 2 R(x) = -10x 2 + x 1 Haz las siguientes operaciones: P(x) + Q(x) = P(x) + R(x) = Q(x) P(x) = P(x) R(x) = Multiplicación de polinomios Para multiplicar dos polinomios, se multiplica cada monomio de uno por todos los demás del otro, y después se suman los polinomios obtenidos. Ejemplo: vamos a multiplicar los polinomios P(x) = x 2 + 2x - 3 y Q(x) = -3x 2-2x 5 Colocamos los polinomios uno arriba y otro debajo x 2 +2x -3 Multiplicamos el -5 por los monomios de arriba y colocamos en su sitio Multiplicamos el -2x por los monomios de arriba y colocamos en su sitio Multiplicamos el -3x 2 por los monomios de arriba y colocamos en su sitio -3x 2-2x -5-5x 2-10x +15-2x 3-4x 2 +6x -3x 4-6x 3 +9x 2 Sumamos los monomios semejantes -3x 4-8x 3-4x +15 Resultado final: -3x 4 8x 3 4x + 15 División de polinomios Para dividir polinomios es necesario que el grado del polinomio dividendo sea mayor o igual que el grado del polinomio divisor. Hagamos un ejemplo despacio. Ejemplo: vamos a dividir los polinomios P(x) = 4x 2 + 2x - 14 y Q(x) = 2x 5 Colocamos los polinomios para dividir +4x 2 +2x x - 5 Dividimos el 1º monomio del dividendo (+4x 2 ) por el 1º del divisor (+2x) y nos da +2x (al cociente). +2x se multiplica por los monomios del divisor (-5 y +2x) y los resultados se colocan frente a sus semejantes cambiados de signo para restar. Resto y bajo el siguiente monomio (-14) Repito el proceso: divido el primer monomio que tengo (+12x) entre el 1º del divisor (+2x) y nos da +6 que va al cociente +6 se multiplica por los monomios del divisor (-5 y +2x) y los resultados se colocan frente a sus semejantes cambiados de signo para restar. Resto. Como no hay para bajar, se acabó la división. -4x 2 +10x +2x x x

8 Por tanto, el resultado de la división de P(x) = 4x2 + 2x -14 entre Q(x) = 2x 5 es 2x + 6 y de resto queda Dados los polinomios: P(x) = 2x 3-5x 2-14x + 10 Q(x) =2x + 3 Haz las siguientes operaciones: P(x) Q(x) = P(x) : Q(x) = 4. Identidades notables Una identidad es una igualdad algebraica que es cierta para cualquier valor de las letras (incógnitas) que se elijan. Así por ejemplo 3x + 5x = 8x es una identidad porque si: x = = = 8 8 = 8 x = = = =40 x = -2 3 (-2) + 5 (-2) = 8 (-2) = = -16 En este apartado vamos a ver las llamadas identidades notables, muy conocidas en matemáticas. Cuadrado de la suma El cuadrado de una suma (a + b) es igual al cuadrado del primero (a) más el cuadrado del segundo (b), más el doble del primero por el segundo. (a + b) 2 = a 2 + 2ab + b 2 Ejemplos: ( + 3) 2 = = (2 + 4) 2 = (2x) x = Imagen: Matemáticas y Tecnología. Gobierno de Aragón Cuadrado de la diferencia El cuadrado de una diferencia (a - b) es igual al cuadrado del primero (a) más el cuadrado del segundo (b), menos el doble del primero por el segundo. (a - b) 2 = a 2-2ab + b 2 Imagen: Matemáticas y Tecnología. Gobierno de Aragón

9 Ejemplos: ( - 3) 2 = = (3-5) 2 = (3x) x = Suma por diferencia El producto de la suma de dos monomios (a + b) por su diferencia (a b) es igual a la diferencia de los cuadrados de ambos monomios. (a + b) (a - b) = a 2 - b 2 Ejemplos: (x + 3) ( - 3) = (4x + 2) (4-2) = Imagen: Matemáticas y Tecnología. Gobierno de Aragón 7. Resuelve estas identidades notables: (5x + 5) 2 = (2x 7) 2 = (2x + 2) (2x 2) = (x + 10) 2 = (x 1) 2 = (x +1) (x 1) = Glosario Álgebra: parte de las matemáticas que nos permite estudiar y trabajar con expresiones en las que aparecen números y letras relacionados con las operaciones matemáticas. Monomio: es una expresión algebraica (consta de números y letras que se multiplican). Tiene dos partes: el coeficiente o número y la parte literal o letras. Polinomio: es una expresión algebraica compuesta por dos o más monomios. Identidad: es una igualdad algebraica que es cierta para cualquier valor de las letras (incógnitas) que se utilicen. Actividades 1. Expresa en lenguaje algebraico: a) El cuadrado de un número menos su triple. b) El producto de dos números consecutivos. c) La mitad de la suma de dos números. d) Un número más su cuarta parte. e) El cuadrado de la suma de dos números. f) La suma de los cuadrados de dos números.

10 2. Indica el grado de los siguientes monomios y escribe uno semejante a cada uno. a) 3 b) 2 4 c) 1/2 2 d) 5 3. Efectúa las operaciones y simplifica la expresión resultante: a) = b) = c) 3 (-6 5 ) = d) 2 y 2 (-xy 2 ) = 4. Indica el grado y término independiente de los siguientes polinomios: a) b) c) Calcula el valor numérico de para x = 0, x = 2 y x = Dados los polinomios P( ) = , ( ) = y ( ) = 4 Calcula: a) P( ) + Q( ) = c) P( ) Q( ) = b) Q( ) R( ) = d) Q( ) : R( ) = 7. Opera y simplifica: a) ( ) ( 2) 4 ( 1) = b) (9 + 3) ( ) 6( ) = 8. Resuelve estas identidades notables: a) (x + 8) 2 = b) (3x 3) 2 = c) (4x + 2) (4x 2) = d) (x - 10) 2 = e) (x + 1) 2 = f) (x + 9) (x 9) = Soluciones a los practica Practica 1 Practica 2 Monomios Grado Coeficiente Parte literal 1-5 x 7 6 x 2 y 3 z 2 6 x 5 z 11 8 x 5 y 6

11 Practica x 2-2 x 2 6x 2 y 5 2y 10 x 2 y 3 20x 10-1/3x 5 2x 3 y 4 56x 6 y 8 z 5 2x 2 y 3 z Practica 4 Para x = 2 P(x) = 9 Para x = -2 P(x) = -31 Para x = 0 P(x) = -3 Practica 5 P(x) + Q(x) = x 4 + 2x 3 + 3x 2 4x + 5 P(x) + R(x) = -7x 2 2x + 2 Q(x) P(x) = x 4 + 2x 3 3x 2 + 2x 1 P(x) R(x) = 13x 2 4x + 4 Practica 6 P(x) Q(x) = 4x 4 4x 3 43x 2 22x + 30 P(x) : Q(x) = x 2 4x 1 Resto: 13 Practica 7 (5x + 5) 2 = 25x x + 25 (2x 7) 2 = 4x 2 28x + 49 (2x + 2) (2x 2) = 4x 2-4 (x + 10) 2 = x x (x 1) 2 = x 2 2x + 1 (x +1) (x 1) = x 2 1 Bibliografía Gobierno de Aragón. Matemáticas y Tecnología, módulo 3. Educación Secundaria para Personas Adultas. España. Gobierno de Aragón p. Web:

I.E.S. Tierra de Ciudad Rodrigo Departamento de Matemáticas TEMA 6. POLINOMIOS

I.E.S. Tierra de Ciudad Rodrigo Departamento de Matemáticas TEMA 6. POLINOMIOS TEMA 6. POLINOMIOS Una expresión algebraica es un conjunto de letras y números unidos por los signos matemáticos. Las expresiones algebraicas surgen de traducir al lenguaje matemático enunciados en los

Más detalles

MONOMIOS Y POLINOMIOS

MONOMIOS Y POLINOMIOS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas o indeterminadas y se representan por letras.

Más detalles

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma. FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto

Más detalles

Se dice que dos monomios son semejantes cuando tienen la misma parte literal

Se dice que dos monomios son semejantes cuando tienen la misma parte literal Expresiones algebraicas 1 MONOMIOS Conceptos Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural.

Más detalles

RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO

RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO OBJETIVO RECONOCER EL GRADO, EL TÉRMINO Y LOS COEICIENTES DE UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma de monomios, que son los términos del polinomio.

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas º ESO 1. Expresiones algebraicas En matemáticas es muy común utilizar letras para expresar un resultado general. Por ejemplo, el área de un b h triángulo es base por altura dividido por dos y se expresa

Más detalles

POLINOMIOS En esta unidad aprenderás a:

POLINOMIOS En esta unidad aprenderás a: POLINOMIOS En esta unidad aprenderás a: Reconocer polinomios y calcular su valor numérico Realizar operaciones con polinomios. Manejar la regla de Ruffini y el teorema del resto para encontrar las raíces

Más detalles

La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes.

La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes. Suma de monomios Sólo podemos sumar monomios semejantes. La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de los coeficientes. ax n + bx n = (a + b)x

Más detalles

Ficha de Repaso: Lenguaje Algebraico

Ficha de Repaso: Lenguaje Algebraico Ficha de Repaso: Lenguaje Algebraico 1º) Traduce las siguientes afirmaciones al lenguaje algebraico: a) El doble de un número b) El cubo de un número c) El cuadrado de un número menos su doble d) Un número

Más detalles

TEMA 4: EXPRESIONES ALGEBRAICAS.

TEMA 4: EXPRESIONES ALGEBRAICAS. TEMA 4: EXPRESIONES ALGEBRAICAS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. CURSO 2011-2012 Página 1 de 14 Profesor: Manuel González de León Curso

Más detalles

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 1º ESO. (2ª parte)

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 1º ESO. (2ª parte) TRABAJO DE MATEMÁTICAS PENDIENTES DE 1º ESO. (2ª parte) NÚMEROS RACIONALES REDUCCIÓN DE FRACCIONES AL MISMO DENOMINADOR Para reducir varias fracciones al mismo denominador se siguen los siguientes pasos:

Más detalles

EXPRESIONES ALGEBRAICAS. El tripe de un número menos «cinco» en lenguaje algebraico se escribe

EXPRESIONES ALGEBRAICAS. El tripe de un número menos «cinco» en lenguaje algebraico se escribe 1 Álgebral EXPRESIONES ALGEBRAICAS El tripe de un número menos «cinco» en lenguaje algebraico se escribe 3x 5: 3x 5 es una expresión algebraica donde x es la incógnita. La letra x representa un número

Más detalles

Un monomio es el producto indicado de un número por una o varias letras GRADO 4º

Un monomio es el producto indicado de un número por una o varias letras GRADO 4º TEMA. POLINOMIOS OPERACIONES. MONOMIOS Un monomio es el producto indicado de un número por una o varias letras GRADO º COEFICIENTE PARTE LITERAL. VALOR NUMÉRICO DE UN MONOMIO Es el resultado que se obtiene

Más detalles

MATEMÁTICAS ÁLGEBRA (TIC)

MATEMÁTICAS ÁLGEBRA (TIC) COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS ÁLGEBRA (TIC) GRADO:8 O A, B DOCENTE: Nubia E. Niño C. FECHA: 23 / 02 / 15 GUÍA UNIFICADA: # 1 5; # 1-6 y 1-7 DESEMPEÑOS:

Más detalles

UNIDAD DE APRENDIZAJE I

UNIDAD DE APRENDIZAJE I UNIDAD DE APRENDIZAJE I Saberes procedimentales Interpreta y utiliza correctamente el lenguaje simbólico para el manejo de expresiones algebraicas. 2. Identifica operaciones básicas con expresiones algebraicas.

Más detalles

Apuntes de matemáticas 2º ESO Curso 2013-2014. Lenguaje algebraico.

Apuntes de matemáticas 2º ESO Curso 2013-2014. Lenguaje algebraico. Lenguaje algebraico. Expresiones algebraicas Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman variables, incógnitas

Más detalles

Alumno Fecha Actividad 13 Expresiones algebraicas 1º ESO

Alumno Fecha Actividad 13 Expresiones algebraicas 1º ESO Alumno Fecha Actividad 1 Expresiones algebraicas 1º ESO Las expresiones que resultan de combinar números y letras relacionándolos con las operaciones habituales se llaman expresiones algebraicas y se utilizan

Más detalles

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las

Más detalles

EL LENGUAJE ALGEBRAICO

EL LENGUAJE ALGEBRAICO LENGUAJE ALGEBRAICO Guillermo Ruiz Varela - PT EL LENGUAJE ALGEBRAICO Hasta ahora siempre hemos trabajado en matemáticas con números y signos, es lo que se llama lenguaje numérico. A partir de ahora, vamos

Más detalles

Ámbito Científico-tecnológico Módulo III Bloque 3 Unidad 4 Fácil, fácil, fácil. Pon una ecuación en tu vida

Ámbito Científico-tecnológico Módulo III Bloque 3 Unidad 4 Fácil, fácil, fácil. Pon una ecuación en tu vida Ámbito Científico-tecnológico Módulo III Bloque 3 Unidad 4 Fácil, fácil, fácil. Pon una ecuación en tu vida Siempre se ha dicho que las ecuaciones son muy difíciles. Casi con pronunciar su nombre ya da

Más detalles

Curso º ESO. UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón

Curso º ESO. UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón 2º ESO UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón OBJETIVOS CONTENIDOS PROCEDIMIENTOS Lenguaje algebraico. Normas y Traducción

Más detalles

Tema 6 Lenguaje Algebraico. Ecuaciones

Tema 6 Lenguaje Algebraico. Ecuaciones Tema 6 Lenguaje Algebraico. Ecuaciones 1. El álgebra El álgebra es una rama de las matemáticas que emplea números y letras con las operaciones aritméticas de sumar, restar, multiplicar, dividir, potencias

Más detalles

EL LENGUAJE ALGEBRAICO

EL LENGUAJE ALGEBRAICO TEMA 5 EL LENGUAJE ALGEBRAICO ÁLGEBRA, EL ARTE DE LA COSA Como casi todas las palabras actuales que empiezan por al, el término álgebra tiene origen árabe. Se lo debemos a un matemático llamado Al-Khwarizmi,

Más detalles

TEMA 5. Expresiones Algebraicas

TEMA 5. Expresiones Algebraicas TEMA 5 Expresiones Algebraicas 5.1.- Lenguaje Algebraico El lenguaje numérico sirve para expresar operaciones utilizando solamente números. El lenguaje algebraico sirve para expresar situaciones reales

Más detalles

cómo expresarías?. ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: POLINOMIOS Grupo: 3º A Expresiones algebraicas Álgebra vs Aritmética

cómo expresarías?. ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: POLINOMIOS Grupo: 3º A Expresiones algebraicas Álgebra vs Aritmética 16/01/01 ÁLGEBRA Álgebra Unidad 4. El lenguaje algebraico. TEMA 4: POLINOMIOS Grupo: º A cómo expresarías?. La altura de mi hermano si te digo que mide 10 cm más que mi hermana: El perímetro de un triángulo

Más detalles

POLINOMIOS Y FRACCIONES ALGEBRAICAS

POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS Monomio: Monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. 2x

Más detalles

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA. POLINOMIOS Y FRACCIONES ALGEBRAICAS.. Repaso de polinomios - Epresión algebraica. Valor numérico - Polinomios. Operaciones con polinomios.. Identidades notables - Cuadrado de una suma de una diferencia

Más detalles

COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS. 1º ESO

COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS. 1º ESO COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS. º ESO RELACIÓN 5: ALGEBRA Lenguaje algebraico, monomios polinomios EXPRESIÓN ALGEBRAICA Es un conjunto de números letras

Más detalles

Representación Gráfica (recta numérica)

Representación Gráfica (recta numérica) NÚMEROS NATURALES ( N ) Representación Gráfica (recta numérica) 0 1 2 3 4 R Mediante un punto negro representamos el 1, el 3 y el 4 NÚMEROS ENTEROS ( Z ) - 2-1 0 1 2 R Mediante un punto negro representamos

Más detalles

Expresiones algebraicas

Expresiones algebraicas Expresiones algebraicas Una expresión algebraica es una combinación de letras y números relacionadas por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las

Más detalles

Qué son los monomios?

Qué son los monomios? Qué son los monomios? Recordemos qué es una expresión algebraica. Definición Una expresión algebraica es aquella en la que se utilizan letras, números y signos de operaciones. Si se observan las siguientes

Más detalles

1. OPERATORIA ALGEBRAICA 1.1 TÉRMINOS SEMEJANTES

1. OPERATORIA ALGEBRAICA 1.1 TÉRMINOS SEMEJANTES MATEMÁTICA MÓDULO 1 Eje temático: Álgebra 1. OPERATORIA ALGEBRAICA 1.1 TÉRMINOS SEMEJANTES Se denominan términos semejantes a aquellos que tienen la misma parte literal. Por ejemplo: -2a 2 b y 5a 2 b son

Más detalles

Una expresión algebraica es una combinación de números y letras combinados mediante las operaciones matemáticas.

Una expresión algebraica es una combinación de números y letras combinados mediante las operaciones matemáticas. TEMA 6 EXPRESIONES ALGEBRAICAS Una expresión algebraica es una combinación de números y letras combinados mediante las operaciones matemáticas. Ejemplo: 2 x, 2 a + 3, m (n - 3),... Usamos las expresiones

Más detalles

Suma, diferencia y producto de polinomios

Suma, diferencia y producto de polinomios I, Polinomios Suma, diferencia y producto de polinomios Un monomio es una expresión algebraica donde los números (coeficientes) y las letras (parte literal) están separados por el signo de la multiplicación.

Más detalles

Matemáticas 2º E.S.P.A. Pág.1 C.E.P.A. Plus Ultra. Logroño

Matemáticas 2º E.S.P.A. Pág.1 C.E.P.A. Plus Ultra. Logroño ALGEBRA 1. LETRAS EN VEZ DE NÚMEROS En muchas tareas de las matemáticas es preciso trabajar con números de valor desconocido o indeterminado. En esos casos, los números se representan por letras y se operan

Más detalles

RESUMEN DE CONCEPTOS

RESUMEN DE CONCEPTOS RESUMEN DE CONCEPTOS 1º ESO MATEMÁTICAS NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número exacto de veces. Ejemplo: 16 es múltiplo

Más detalles

POLINOMIOS. El grado de un polinomio P(x) es el mayor exponente al que se encuentra elevada la variable x.

POLINOMIOS. El grado de un polinomio P(x) es el mayor exponente al que se encuentra elevada la variable x. POLINOMIOS Un POLINOMIO es una expresión algebraica de la forma: x 1 + a 0 P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 Siendo a n, a n - 1... a 1, a o números, llamados coeficientes.

Más detalles

Lección 10: División de Polinomios. Dra. Noemí L. Ruiz Limardo 2009

Lección 10: División de Polinomios. Dra. Noemí L. Ruiz Limardo 2009 Lección 10: División de Polinomios Dra. Noemí L. Ruiz Limardo 009 Objetivos de la lección Al finalizar esta lección los estudiantes: Dividirán polinomios de dos o más términos por polinomios de uno y dos

Más detalles

POLINOMIOS Y FRACCIONES ALGEBRAICAS

POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS Definición de monomio. Expresión algebraica formada por el producto de un número finito de constantes y variables con exponente natural. Al producto de las constantes

Más detalles

Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos:

Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: 1 CONOCIMIENTOS PREVIOS. 1 Polinomios. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Repasar las operaciones básicas con números reales. Repasar

Más detalles

Expresiones algebraicas

Expresiones algebraicas Epresiones algebraicas Matemáticas I 1 Epresiones algebraicas Epresiones algebraicas. Monomios y polinomios. Monomios y polinomios. Una epresión algebraica es una combinación de letras, números y signos

Más detalles

DESARROLLO D) 4. para a = 1 y b = 2 (a 2 + b 2 )(2a 3b 2 ) es:

DESARROLLO D) 4. para a = 1 y b = 2 (a 2 + b 2 )(2a 3b 2 ) es: ENCUENTRO # 10 TEMA:Operaciones con polinomios CONTENIDOS: 1. Multiplicación de polinomios. 2. Productos notables. DESARROLLO Ejercicio Reto x 2 1. Al racionalizar el denominador de la fracción 3 + se

Más detalles

2. EXPRESIONES ALGEBRAICAS

2. EXPRESIONES ALGEBRAICAS 2. EXPRESIONES ALGEBRAICAS Tales como, 2X 2 3X + 4 ax + b Se obtienen a partir de variables como X, Y y Z, constantes como -2, 3, a, b, c, d y cobinadas utilizando la suma, resta, multiplicación, división

Más detalles

UNIDAD 5: ÁLGEBRA. Nacho Jiménez ANT ÍNDICE SIG

UNIDAD 5: ÁLGEBRA. Nacho Jiménez ANT ÍNDICE SIG UNIDAD 5: ÁLGEBRA Nacho Jiménez 0. Conceptos previos ÍNDICE 1. Para qué sirve el álgebra? 2. Expresiones algebraicas 2.1 Monomios 2.2 Suma y resta de monomios 2.3 Multiplicación de monomios 2.4 División

Más detalles

Expresiones algebraicas (1º ESO)

Expresiones algebraicas (1º ESO) Epresiones algebraicas (º ESO) Lenguaje numérico y lenguaje algebraico. El lenguaje en el que intervienen números y signos de operaciones se denomina lenguaje numérico. Lenguaje usual Lenguaje numérico

Más detalles

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +...

Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... Polinomios Primero que todo vamos a definirlos como aquella expresión algebraica de la forma: P(x) = a n x n + a n - 1 x n - 1 + a n - 2 x n - 2 +... + a 1 x 1 + a 0 Siendo a n, a n -1... a 1, a o números,

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Una epresión algebraica es aquella en la que se operan números conocidos y números desconocidos representados por las letras a, b, c,, y, z,..., que se denominan

Más detalles

POLINOMIOS. Un polinomio es una expresión algebraica (conjunto de. números y letras que representan números, conectados por las

POLINOMIOS. Un polinomio es una expresión algebraica (conjunto de. números y letras que representan números, conectados por las POLINOMIOS Teoría 1.- Qué es un polinomio? Un polinomio es una expresión algebraica (conjunto de números y letras que representan números, conectados por las operaciones de suma, resta, multiplicación,

Más detalles

INTRODUCCIÓN. En ocasiones has visto expresiones como la siguiente: a + b = b + a

INTRODUCCIÓN. En ocasiones has visto expresiones como la siguiente: a + b = b + a INTRODUCCIÓN En ocasiones has visto expresiones como la siguiente: a + b b + a Con ella representamos la propiedad conmutativa de la suma. Esta propiedad es cierta para cualquier par de números y por ello

Más detalles

DEL LENGUAJE DE LOS NÚMEROS AL LEGUAJE ALGEBRAICO.

DEL LENGUAJE DE LOS NÚMEROS AL LEGUAJE ALGEBRAICO. DEL LENGUAJE DE LOS NÚMEROS AL LEGUAJE ALGEBRAICO. En ocasiones, en matemáticas, necesitamos operar con números desconocidos. Para ello, se toman letras para representar esas cantidades desconocidas o

Más detalles

NÚMEROS ENTEROS. 2º. Representa en una recta numérica los números: (+4), (-3), (0), (+7), (-2), (+2) y luego escríbelos de forma ordenada.

NÚMEROS ENTEROS. 2º. Representa en una recta numérica los números: (+4), (-3), (0), (+7), (-2), (+2) y luego escríbelos de forma ordenada. URB. LA CANTERA S/N. HTTP:/WWW.MARIAAUXILIADORA.COM º ESO 1º. Indica el número que corresponde a cada letra. NÚMEROS ENTEROS º. Representa en una recta numérica los números: (+) (-) (0) (+) (-) (+) y luego

Más detalles

Aquí encontrará todas las asignaciones del tema de Expresiones Algebraicas y polinomios.

Aquí encontrará todas las asignaciones del tema de Expresiones Algebraicas y polinomios. Aquí encontrará todas las asignaciones del tema de Expresiones Algebraicas y polinomios. Sitio: Cursos en Línea de la UPRA Curso: Mate0006-10-II Desarrollo de Destrezas Básicas en Matemáticas Libro: Asignaciones

Más detalles

1. dejar a una lado de la igualdad la expresión que contenga una raíz.

1. dejar a una lado de la igualdad la expresión que contenga una raíz. 1. Resuelve las siguientes ecuaciones reales: Solución x 1 + x = 0 ; 3 x = 3 ; ln(x 1) + 4 = ln 3 Ecuaciones con raíces: No todas las ecuaciones de este tipo son sencillas de resolver, pero podemos intentar

Más detalles

EJERCICIOS DE EXPRESIONES ALGEBRAICAS

EJERCICIOS DE EXPRESIONES ALGEBRAICAS EJERCICIOS DE EXPRESIONES ALGEBRAICAS Ejercicio nº.- Epresa en lenguaje algebraico cada uno de los siguientes enunciados: a El 0% de un número. b El área de un rectángulo de base cm y altura desconocida.

Más detalles

5 Expresiones algebraicas

5 Expresiones algebraicas 8948 _ 04-008.qxd /9/07 :0 Página 9 Expresiones algebraicas INTRODUCCIÓN RESUMEN DE LA UNIDAD El lenguaje algebraico sirve para expresar situaciones relacionadas con la vida cotidiana, utilizando letras

Más detalles

Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Sec. 5.1: Polinomios

Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Sec. 5.1: Polinomios Universidad de Puerto Rico en Arecibo Departamento de Matemáticas Sec. 5.1: Polinomios Prof. Caroline Rodríguez Martínez Polinomios Un polinomio es un solo término o la suma de dos o más términos se compone

Más detalles

Introducción al Álgebra

Introducción al Álgebra Capítulo 3 Introducción al Álgebra L a palabra álgebra deriva del nombre del libro Al-jebr Al-muqābāla escrito en el año 825 D.C. por el matemático y astrónomo musulman Mohamad ibn Mūsa Al-Khwārizmī. El

Más detalles

DESARROLLO. a r a s = ar s

DESARROLLO. a r a s = ar s ENCUENTRO # 11 TEMA:Operaciones con polinomios CONTENIDOS: 1. División de polinomios. DESARROLLO Ejercicio Reto 1. El resultado de n 4 n 1 es: A) 1 B) 1 n 1 B)4 n 1 D) 4 E) 1 4 4 4 4 4 n 1 4 2. Si para

Más detalles

Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios.

Productos notables. Se les llama productos notables (también productos especiales) precisamente porque son muy utilizados en los ejercicios. Productos notables Sabemos que se llama producto al resultado de una multiplicación. También sabemos que los valores que se multiplican se llaman factores. Se llama productos notables a ciertas expresiones

Más detalles

UNIDAD I FUNDAMENTOS BÁSICOS

UNIDAD I FUNDAMENTOS BÁSICOS República Bolivariana de Venezuela Universidad Alonso de Ojeda Administración Mención Gerencia y Mercadeo UNIDAD I FUNDAMENTOS BÁSICOS Elaborado por: Ing. Ronny Altuve Ciudad Ojeda, Mayo 2016 ÁLGEBRA Es

Más detalles

SERIE INTRODUCTORIA. REPASO DE ALGEBRA.

SERIE INTRODUCTORIA. REPASO DE ALGEBRA. SERIE INTRODUCTORIA. REPASO DE ALGEBRA. 1.- REDUCCION DE TÉRMINOS SEMEJANTES. Recuerde que los términos semejantes son aquellos que tienen las mismas letras con los mismos exponentes. Ejemplos: *7m; 5m

Más detalles

Mó duló 04: Á lgebra Elemental I

Mó duló 04: Á lgebra Elemental I INTERNADO MATEMÁTICA 016 Guía para el Estudiante Mó duló 04: Á lgebra Elemental I Objetivo: Identificar y utilizar conceptos matemáticos asociados al estudio del álgebra elemental. Problema 1 La edad de

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS

OBJETIVOS CONTENIDOS PROCEDIMIENTOS 82652 _ 0275-0286.qxd 27/4/07 1:20 Página 275 Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender

Más detalles

UNIDAD IV CONTENIDO TEMÁTICO

UNIDAD IV CONTENIDO TEMÁTICO UNIDAD IV CONTENIDO TEMÁTICO OPERACIONES CON FRACCIONES ALGEBRAICAS I.S.C. Alejandro de Fuentes Martínez 1 ESQUEMA-RESUMEN RESUMEN DE LA UNIDAD IV Conceptos Mínimo común múltiplo OPERACIONES CON FRACCIONES

Más detalles

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía.

LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía. Melilla Los números Enteros y operaciones elementales LOS NÚMEROS ENTEROS 1º LOS NÚMEROS ENTEROS. El conjunto de los números enteros Z está formado por los números naturales (enteros positivos) el cero

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION

INSTITUCION EDUCATIVA LA PRESENTACION INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: HUGO HERNAN BEDOYA Y LUIS LOPEZ TIPO DE GUIA: NIVELACION PERIODO GRADO FECHA DURACION 8 A/B Abril

Más detalles

Tema 1: NUMEROS ENTEROS

Tema 1: NUMEROS ENTEROS COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS 1º ESO. NÚMEROS ENTEROS Tema 1: NUMEROS ENTEROS Los números enteros (representados por la letra Z), son un conjunto de número

Más detalles

Operaciones con monomios y polinomios

Operaciones con monomios y polinomios Operaciones con monomios y polinomios Para las operaciones algebraicas se debe de tener en cuenta que existen dos formas para representar cantidades las cuales son números o letras. Al representar una

Más detalles

Ámbito Científico-Tecnológico Módulo IV Bloque 2 Unidad 1 Tan real como la vida misma

Ámbito Científico-Tecnológico Módulo IV Bloque 2 Unidad 1 Tan real como la vida misma Ámbito Científico-Tecnológico Módulo IV Bloque 2 Unidad 1 Tan real como la vida misma Estamos acostumbrados a trabajar con números naturales o enteros en la vida cotidiana pero en algunas ocasiones tendrás

Más detalles

TEMA 05 - EXPRESIONES ALGEBRAICAS

TEMA 05 - EXPRESIONES ALGEBRAICAS º ESO TEMA 05 - EXPRESIONES ALGEBRAICAS 1º. Indica las expresiones algebraicas correspondientes a los siguientes enunciados, utilizando una sola letra (x): a) El siguiente de un número, más tres unidades.

Más detalles

Unidad 1: Los números enteros Pag. 3 Unidad 2: Potencias y raíces.pag. 33 Unidad 3: Fracciones y decimales..pag. 64 Unidad 4: Expresiones algebraicas

Unidad 1: Los números enteros Pag. 3 Unidad 2: Potencias y raíces.pag. 33 Unidad 3: Fracciones y decimales..pag. 64 Unidad 4: Expresiones algebraicas Unidad 1: Los números enteros Pag. 3 Unidad 2: Potencias y raíces.pag. 33 Unidad 3: Fracciones y decimales..pag. 64 Unidad 4: Expresiones algebraicas Pag. 91 Unidad 5: Ecuaciones Pag. 130 Los números enteros

Más detalles

Centro Regional Universitario De Bocas del Toro

Centro Regional Universitario De Bocas del Toro Centro Regional Universitario De Bocas del Toro Nociones Fundamentales del Álgebra El Álgebra es una rama de la matemática que se ocupa de las cantidades más generales y para representarla utiliza letras,

Más detalles

APÉNDICE MATEMÁTICO DEL MÓDULO DE: GESTIÓN FINANCIERA

APÉNDICE MATEMÁTICO DEL MÓDULO DE: GESTIÓN FINANCIERA APÉNDICE MATEMÁTICO DEL MÓDULO DE: GESTIÓN FINANCIERA 1º CURSO DEL CICLO DE GRADO SUPERIOR DE ADMINISTRACIÓN Y FINANZAS. CONTENIDO: Números enteros Fracciones Potencias Igualdades algebraicas notables

Más detalles

Guía Nº 1(B) ALGEBRA

Guía Nº 1(B) ALGEBRA Liceo Industrial Benjamín Dávila Larraín Unidad Técnica Pedagógica Guía Nº (B) ALGEBRA I. Identificación Docente Verónica Moya R. Claudia Paez Subsector/Módulo Matemática Email docente Aprendizaje Esperado

Más detalles

Expresiones algebraicas

Expresiones algebraicas Expresiones algebraicas Contenidos 1. Expresiones algebraicas Qué son? Cómo las obtenemos? Valor numérico 2. Monomios Qué son? Sumar y restar Multiplicar 3. Polinomios Qué son? Sumar y restar Multiplicar

Más detalles

RESUMEN ALGEBRA BÁSICA

RESUMEN ALGEBRA BÁSICA RESUMEN ALGEBRA BÁSICA TERMINO ALGEBRAICO: Es una expresión matemática que consta de un producto (o cociente) de un número con una variable elevado a un exponente (o con varias variables). TÉRMINO ALGEBRAICO

Más detalles

CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria.

CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. CONJUNTOS NUMÉRICOS La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. Por ejemplo, usamos números para contar una determinada cantidad

Más detalles

primarios = 3; 5 4 = 1; 2(3) = 6; 3. Observa todos los valores usados en

primarios = 3; 5 4 = 1; 2(3) = 6; 3. Observa todos los valores usados en Unidad 1. Conjuntos de números II. Operaciones y expresiones 1. Operaciones con números racionales. Las operaciones con números racionales las estamos realizando desde los grados 12 primarios. 1 + 2 =

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones algebraicas: bac,

Más detalles

Matemáticas Universitarias

Matemáticas Universitarias Matemáticas Universitarias 1 Sesión No. 2 Nombre: Expresiones algebraicas y sus operaciones Objetivo de la asignatura: En esta sesión el estudiante aplicará las operaciones básicas como suma, resta, multiplicación

Más detalles

EL GRADO Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO

EL GRADO Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO RECONOCER OBJETIVO EL GRADO Y LOS ELEMENTOS QUE ORMAN UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma algebraica de monomios, que son los términos del polinomio.

Más detalles

RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO

RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO 2015-2016 UNIDAD 1: NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles

Números Naturales. Cero elemento neutro: = 12 Sucesión fundamental : se obtiene el siguiente número = 9

Números Naturales. Cero elemento neutro: = 12 Sucesión fundamental : se obtiene el siguiente número = 9 Números Naturales Cuando comenzamos a contar los objetos, los años, etc, nos hemos encontrado con los números de forma natural; por eso a este conjunto de números así aprendidos se les denomina números

Más detalles

Institución Educativa Distrital Madre Laura

Institución Educativa Distrital Madre Laura Una fracción algebraica es una expresión fraccionaria en la que numerador y denominador son polinomios. Son fracciones algebraicas: Las fracciones algebraicas tienen un comportamiento similar a las fracciones

Más detalles

4 Ecuaciones e inecuaciones

4 Ecuaciones e inecuaciones Ecuaciones e inecuaciones INTRODUCCIÓN Comenzamos esta unidad diferenciando entre identidades y ecuaciones, y definiendo los conceptos asociados a cualquier ecuación: miembros, términos, coeficientes,

Más detalles

Multiplicación y división de polinomios

Multiplicación y división de polinomios Semana 4 4 Empecemos! En esta sesión daremos continuidad al estudio de las operaciones de polinomios, la multiplicación y división. Para avanzar satisfactoriamente en este tópico debes recordar la propiedad

Más detalles

Lección 7: POLINOMIOS

Lección 7: POLINOMIOS Lección 7: POLINOMIOS 7.1.- POLINOMIOS Lee detenidamente en las páginas 92 y 93 del libro la cuestión 4, Polinomios, 1.- Página 93, actividad 14. 2.- Página 93, actividad 15. 3.- Página 93, actividad 16.

Más detalles

Un número es irracional si posee infinitas cifras decimales no periódicas, por tanto no se pueden expresar en forma de fracción.

Un número es irracional si posee infinitas cifras decimales no periódicas, por tanto no se pueden expresar en forma de fracción. 1.- Números reales Los números irracionales Un número es irracional si posee infinitas cifras decimales no periódicas, por tanto no se pueden expresar en forma de fracción. Los números reales El conjunto

Más detalles

Expresiones Algebraicas Racionales en los Números Reales

Expresiones Algebraicas Racionales en los Números Reales en los Números Reales Carlos A. Rivera-Morales Álgebra Tabla de Contenido Contenido cional nales Algebraica Racional ales : Contenido Discutiremos: qué es una expresión algebraica racional : Contenido

Más detalles

UNIDAD DOS FACTORIZACIÓN

UNIDAD DOS FACTORIZACIÓN UNIDAD DOS FACTORIZACIÓN Factorizar quiere decir descomponer en factores, los factores son divisores de una expresión que, multiplicados entre sí, dan como resultado la primera expresión. FACTOR COMÚN

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas 829566 _ 0249-008.qxd 27/6/08 09:21 Página 27 Polinomios y fracciones algebraicas INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de

Más detalles

OPERACIONES ALGEBRAICAS FUNDAMENTALES

OPERACIONES ALGEBRAICAS FUNDAMENTALES OPERACIONES ALGEBRAICAS FUNDAMENTALES Monomio Un monomio es la representación algebraica más elemental sus componentes son: signo, coeficiente, literal (o literales exponente ( o exponentes, cada literal

Más detalles

EXPRESIONES ALGEBRAICAS ECUACIONES

EXPRESIONES ALGEBRAICAS ECUACIONES EXPRESIONES ALGEBRAICAS ECUACIONES I. Expresiones Algebraicas Una expresión algebraica es una combinación de números y letras, o sólo de letras, unidos por los signos de las operaciones aritméticas. x

Más detalles

LOS NUMEROS IRRACIONALES Y SU REPRESENTACIÓN EN LA RECTA NUMERICA

LOS NUMEROS IRRACIONALES Y SU REPRESENTACIÓN EN LA RECTA NUMERICA GUIA Nº 1: LOS NÚMEROS REALES 1 GRADO: 8º PROFESORA: Eblin Martínez M. ESTUDIANTE: PERIODO: I DURACIÓN: 20 Hrs LOGRO: Realizo operaciones con números naturales, enteros, racionales e irracionales. INDICADORES

Más detalles

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a)

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a) Tema 2: Ecuaciones, Sistemas e Inecuaciones. 2.1 División de polinomios. Regla de Ruffini. Polinomio: Expresión algebraica formada por la suma y/o resta de varios monomios. Terminología: o Grado del polinomio:

Más detalles

UNIDAD III. EXPONENTES Y RADICALES. RAZONES, PROPORCIONES Y VARIACIONES.

UNIDAD III. EXPONENTES Y RADICALES. RAZONES, PROPORCIONES Y VARIACIONES. UNIDAD III. EXPONENTES Y RADICALES. RAZONES, PROPORCIONES Y VARIACIONES. Ley asociativa El producto de tres o más números, es el mismo sin importar la manera en que se agrupan al multiplicarlos. abc=(ac)b=c(ab)

Más detalles

1 of 18 10/25/2011 6:42 AM

1 of 18 10/25/2011 6:42 AM Prof. Anneliesse SánchezDepartamento de MatemáticasUniversidad de Puerto Rico en AreciboEn esta sección discutiremos Expresiones algebraicas y polinomios. Discutiremos los siguientes tópicos: Introducción

Más detalles

PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas

PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas que se resuelven siguiendo Reglas y Fórmulas específicas para cada caso y cuyo resultado puede ser escrito por simple inspección, es decir

Más detalles

POLINOMIOS OPERACIONES CON MONOMIOS

POLINOMIOS OPERACIONES CON MONOMIOS POLINOMIOS Una expresión algebraica es una combinación de letras y números, ligados por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las expresiones algebraicas

Más detalles
Sitemap