Tema 6 Lenguaje Algebraico. Ecuaciones


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 6 Lenguaje Algebraico. Ecuaciones"

Transcripción

1 Tema 6 Lenguaje Algebraico. Ecuaciones 1. El álgebra El álgebra es una rama de las matemáticas que emplea números y letras con las operaciones aritméticas de sumar, restar, multiplicar, dividir, potencias y raíces. Cuando no conocemos uno o varios números utilizamos las letras a las que vamos a llamar incógnitas: x, y, z, Expresión algebraica. Cuando traducimos lenguaje ordinario a lenguaje matemático situaciones en las que aparecen datos o números desconocidos que se representan por letras, surgen las expresiones algebraicas: Lenguaje ordinario El doble de un número Expresión Algebraica 2 x La mitad de un número más tres y + 3 El cuadrado de un número menos seis z 2 6 Si un número es n cuál es el anterior? n 1 El triple del resultado de sumar x más cinco 3 ( x + 5 ) 2 Fco. Javier Sánchez García Pág. 1/11

2 2.1 Algunas reglas para escribir expresiones algebraicas. Entre número y letra y entre letra y letra no se pone el signo de multiplicar: 3 x Se escribe 3x se lee tres x a 2 b c 5 Se escribe a 2 b c 5 Entre un número y un paréntesis no se pone el signo de multiplicar: 6 ( 3x + 2 ) Se escribe 6 ( 3x + 2 ) Si un número y una letra están multiplicando, el número se escribe delante de la letra: x ( - 5 ) Se escribe - 5x Si multiplicamos 1 por una letra, solo ponemos la letra: 1 x 2 Se escribe x 2 Si el exponente de una letra es 1, no se pone: a 5 b 1 c 1 Se escribe a 5 b c 3. Valor Numérico de una expresión algebraica Es el resultado que se obtiene al sustituir las letras por números y hacer las operaciones indicadas. Calcula el valor numérico de estas expresiones algebraicas: a) 2 x + 5 para x = 4 Sustituimos la x por el número 4 y realizamos las operaciones = = 13 b) 3 x 2 + 2y para x = 2 y = 5 Sustituimos la x por el número 2 y sustituimos la y por el número ( 5 ) = = = 2 Fco. Javier Sánchez García Pág. 2/11

3 4. Monomios Los monomios son las expresiones algebraicas mas simples, están formadas unicamente por productos (multiplicaciones) de números y letras: 5x, 8x 2 y, 2a, x, 75abc 3, a, 4.1 Partes de un monomio Los monomios tienen dos partes: El Coeficiente y la Parte Literal El Coeficiente es el número conocido. La Parte Literal es la letra o letras que están multiplicando con el coeficiente. 8 x 2 y Coeficiente 8 Parte Literal x 2 y 4.2 Grado de un monomio El grado de un monomio es el exponente de la letra. Si hay varias letras se suman todos sus exponentes. Monomios de 1º grado: 3x, 5a, 8y, z Monomios de 2º grado: 5xy, 6x 2, 2ab, y 2 Monomios de 3º grado: 4x 3, xyz, 7a 2 b, v Monomios Semejantes Son monomios semejantes los monomios que tienen la misma parte literal (las mismas letras y los mismos exponentes). Escribe 5 monomios semejantes a los dados: a) 2 x 5x, 2x, x, 6x, x b) 5 x 2 y 8 x 2 y, 3 x 2 y, x 2 y, 15 x 2 y, 7 x 2 y c) x 3 x 3, 23x 3, 6 x 3, 8 x 3, 3 x 3 Fco. Javier Sánchez García Pág. 3/11

4 5 Operaciones con Monomios 5.1 Suma y resta de monomios Los monomios sólo se pueden sumar y restar cuando son monomios semejantes. Se suman o restan sus coeficientes y se deja la misma parte literal. Opera o reduce los siguientes monomios: a) 5x + 3x = 8x b) 4 a 2 b + 5 a 2 b 2 a 2 b = 7 a 2 b c) 3x 6x + x 8x + 4x = 6x d) 4x 2 + 5x 6 x 2 + 7x + 4 = 3x x 2 Cuando los monomios no son semejantes no se pueden sumar ni restar y dan lugar a las siguientes expresiones algebraicas: 5x + 6y Binomio (Dos monomios) 4x 2 2z + 5 Trinomio (Tres monomios) 2x + 7y 2 5z + k Polinomio (Más de tres monomios) 5.2 Multiplicación de un número por un monomio Se multiplica el número por el coeficiente del monomio y se deja la misma parte literal. a) 3 (5x) = 15x b) 6 (4x 2 y) = 24 x 2 y c) 5 ( x 6 ) = + 5x Multiplicación de dos monomios Se multiplican los dos coeficientes y se multiplican las dos partes literales, de manera que si alguna letra está en los dos monomios, sólo se pone una vez y con el exponente que sale de sumar sus exponentes. a) ( 3y 2 ) (5x) = 15y 2 x b) ( 6x 3 ) (8x 2 y) = 48 x 5 y c) ( 4x 3 yz 5 ) ( x 6 y 4 w 2 ) = + 4x 9 y 5 z 5 w 2 d) ( x ) ( x ) = x 2 Fco. Javier Sánchez García Pág. 4/11

5 5.4 Multiplicación de un número por un binomio Se aplica la propiedad distributiva. a) 3 ( 5x + 9 ) = 15x + 27 b) 4 ( 8x 6 ) = 32x + 24 c) 7 ( 4x 3y 2 ) = 28x 21y División de dos monomios Escribimos la división como una fracción de dos monomios. Descomponemos en factores los dos monomios y simplificamos. Empezamos dividiendo los signos de los dos monomios y lo colocamos delante de la fracción. Ejemplo: ( 18 x 4 y 2 z 3 ) : ( 12 x y 5 v 2 ) Lo escribimos en forma de fracción: 18 x 4 y 2 z x y 5 v 2 Dividimos los signos y lo ponemos delante de la fracción (- : + = - ) 18 x 4 y 2 z 3 12 x y 5 v 2 Descomponemos los números y las letras y simplificamos: 18 x 4 y 2 z 3 = x x x x y y z z z = 2x 3 z 3 12 x y 5 v x y y y y y v v 3y 3 v 2 Viendo el ejemplo anterior podemos sacar la siguiente regla: Si la letra está repetida en el numerador y en el denominador, aparece sólo donde el exponente es mayor y tendrá de exponente la resta de los exponentes correspondientes. Ejemplo: ( 24 x 4 y 5 z 6 ) : ( 6xy 10 v 2 ) 24 x 4 y 5 z 6 = 4 x 3 z 6 6 x y 10 v 2 y 5 v 2 Fco. Javier Sánchez García Pág. 5/11

6 6. Ecuaciones de Primer Grado con una Incógnita Una ecuación es una igualdad ( = ) que sólo se verifica para unos valores concretos de una variable, generalmente llamada x. Cuando sólo aparece una letra que siempre está elevada a uno, tenemos una ecuación de primer grado con una incógnita. 6.1 Partes de una ecuación El signo = divide a la ecuación en dos partes llamadas miembros Primer miembro Segundo miembro 7x 10 + x 2 = 6x 3 + 3x 1 términos términos En cada miembro y separados por los signos de + y están los términos. Hay dos clases de términos: Términos con x : 7x, x, 6x, 3x Términos sin x (términos independientes): 10, 2, 3, 1, 6.2 Resolver una ecuación Resolver una ecuación consiste en hallar los valores de la incógnita x que hacen cierta la igualdad. Hay dos formas de resolver una ecuación: por tanteo y por un método. Por tanteo consiste en ir probando números hasta que encontremos uno que cumpla la igualdad. Ejemplo: 3x + 2 = 2x + 8 Le vamos dando valores a la x para que se cumpla la igualdad: 0, 1, 2, 3,..., 1, 2, 3, 4,... Cuando x = 6, se cumple la igualdad = = 20 Fco. Javier Sánchez García Pág. 6/11

7 6.3 Método para resolver una ecuación Para resolver ecuaciones de primer grado es conveniente seguir siempre una misma estrategia que facilite su resolución. 1º Quitar denominadores. 2º Quitar paréntesis. 3º Transponer términos semejantes. 4º Reducir términos semejantes. 5º Despejar x 6º Comprobar la solución. 1º Quitar denominadores. Calculamos el m.c.m. de los denominadores. Dividimos el m.c.m. entre cada denominador y el resultado lo multiplicamos por el numerador. Recuerda que si algún término no tiene denominador, es 1. 2º Quitar paréntesis. Podemos encontrarnos con los siguientes casos: Delante del paréntesis hay un número multiplicando: aplicamos la propiedad distributiva. Delante del paréntesis no hay nada o hay un signo +: quitamos el paréntesis y dejamos igual lo que hay dentro. Delante del paréntesis hay un signo : quitamos el paréntesis y cambiamos de signo todo lo que hay dentro. 3º Transponer términos semejantes. Consiste en tener en el 1º miembro todos los términos con x, y en el 2º miembro todos los términos independientes ( sin x ). Para ello debemos saber la siguiente regla: Cuando un término cambia de miembro, cambia de signo. 4º Reducir términos semejantes. Consiste en sumar y restar los términos semejantes en cada miembro para que sólo nos quede un único término con x y un único término independiente. Fco. Javier Sánchez García Pág. 7/11

8 5º Despejar x Consiste en dejar la x sola. Para ello el número que está con la x nos lo llevamos al 2º miembro, teniendo en cuenta la siguiente regla: Si está multiplicando, nos lo llevamos dividiendo, y viceversa. Ya tendremos la solución de x. 6º Comprobar la solución. Consiste en sustituir el valor de x en la ecuación y comprobar que se cumple la igualdad. Ejemplo: Resuelve esta ecuación y comprueba la solución 4x _ 2x + 7 = º Quitamos denominadores calculando el m.c.m. de los denominadores. m.c.m.( 2 y 5) = 2 5 = 10 Dividimos 10 entre cada denominador y el resultado se multiplica por el numerador 5 (4x) 2 ( 2x + 7 ) = º Quitamos paréntesis multiplicando y aplicando propiedad distributiva: 20x 4x 14 = 50 3º Transponer términos semejantes. Nos llevamos 14 al 2º miembro cambiado de signo: 20x 4x = º Reducir términos semejantes. Sumamos y restamos en cada miembro: 16x = 64 5º Despejar x. Nos llevamos 16, que está multiplicando, al 2º miembro dividiendo: x = 64 Dividimos 64 : 16 = 4 16 x = 4 6º Comprobar la solución. Sustituimos la x por 4 en la ecuación: 4 4 _ = _ 15 = = 5 5 = 5 Fco. Javier Sánchez García Pág. 8/11

9 6.4 Soluciones de una ecuación Las Ecuaciones de Primer grado con una incógnita tienen una solución única, como en el ejemplo anterior, sólo hay un valor que hace que la igualdad se cumpla: Pero pueden ocurrir los dos siguientes casos: x = 4 1º 2x + 5 x = x Resolvemos la ecuación 2x x x = x = 0 Cuando ocurre esto se llama una identidad y, para cualquier valor que probemos de x se cumple siempre. Los dos miembros son iguales: 2x + 5 x = x x + 5 = x + 5 2º 4x + 10 x = 3x + 15 Resolvemos la ecuación 4x x 3x = x = 5 Cuando esto ocurre, la ecuación no tiene solución, porque no hay ningún número que multiplicado por 0 dé 5. Fco. Javier Sánchez García Pág. 9/11

10 7. Problemas de Ecuaciones de Primer Grado con una Incógnita Son problemas que se resuelven planteando y resolviendo una ecuación de 1º grado con una incógnita. Es aconsejable seguir los siguientes pasos en el problema: Comprender el enunciado: Se debe leer el problema las veces que sean necesarias para distinguir los datos conocidos y el dato desconocido que se quiere encontrar, es decir, la incógnita x. Escribimos los datos del problema. Pensamos a que dato le vamos a llamar x y los demás datos los ponemos en función de x. Plantear la ecuación: Con los datos y traduciendo el lenguaje ordinario a lenguaje algebraico planteamos (escribimos) la ecuación. Resolver la ecuación: Mediante el método de resolución de ecuaciones, obtenemos la solución. Comprobar la solución: En los datos sustituimos x por el valor obtenido y comprobamos que se cumplen las condiciones del problema. 1. Si al doble de un número le sumamos 15 obtenemos 51. Qué número es? Datos: (Al número le vamos a llamar x ) Número : x Planteamos la ecuación: (Traducimos a lenguaje algebraico) 2 x + 15 = 51 Resolvemos la ecuación: (Método de resolución de ecuaciones) 2 x = x = 36 x = 36 2 x = 18 Comprobamos el resultado: (Comprobamos si 18 cumple las condiciones del problema) = = = 51 Solución: El número es 18 Fco. Javier Sánchez García Pág. 10/11

11 2. En una ferretería se venden tornillos en cajas de tres tamaños: pequeña, mediana y grande. La caja grande contiene el doble que la mediana y la mediana 25 tornillos más que la pequeña. He comprado una caja de cada tamaño y en total hay 375 tornillos, cuántos tornillos hay en cada caja? Datos: (Hay que llamarle x a una de las tres cajas. Como la grande nos la dan en función de la mediana y la mediana en función de la pequeña, llamaremos x a la caja pequeña) Caja pequeña : x Caja mediana: x + 25 Caja grande: 2 ( x + 25 ) Planteamos la ecuación: (Traducimos a lenguaje algebraico: la suma de los tornillos de las tres cajas es igual a 375) x + ( x + 25 ) + 2 ( x + 25 ) = 375 Resolvemos la ecuación: (Método de resolución de ecuaciones) x + x x + 50 = 375 x + x + 2x = x = 300 x = x = 75 Comprobamos el resultado: (Sustituimos x por 75 en los datos y sumamos) Solución Caja pequeña : x = Caja mediana: x + 25 = = Caja grande: 2 ( x + 25 ) = 2 ( ) = = Fco. Javier Sánchez García Pág. 11/11

Se dice que dos monomios son semejantes cuando tienen la misma parte literal

Se dice que dos monomios son semejantes cuando tienen la misma parte literal Expresiones algebraicas 1 MONOMIOS Conceptos Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural.

Más detalles

TEMA 5. Expresiones Algebraicas

TEMA 5. Expresiones Algebraicas TEMA 5 Expresiones Algebraicas 5.1.- Lenguaje Algebraico El lenguaje numérico sirve para expresar operaciones utilizando solamente números. El lenguaje algebraico sirve para expresar situaciones reales

Más detalles

UNIDAD IV CONTENIDO TEMÁTICO

UNIDAD IV CONTENIDO TEMÁTICO UNIDAD IV CONTENIDO TEMÁTICO OPERACIONES CON FRACCIONES ALGEBRAICAS I.S.C. Alejandro de Fuentes Martínez 1 ESQUEMA-RESUMEN RESUMEN DE LA UNIDAD IV Conceptos Mínimo común múltiplo OPERACIONES CON FRACCIONES

Más detalles

Institución Educativa Distrital Madre Laura

Institución Educativa Distrital Madre Laura Una fracción algebraica es una expresión fraccionaria en la que numerador y denominador son polinomios. Son fracciones algebraicas: Las fracciones algebraicas tienen un comportamiento similar a las fracciones

Más detalles

POLINOMIOS. Matemática Intermedia Profesora Mónica Castro

POLINOMIOS. Matemática Intermedia Profesora Mónica Castro POLINOMIOS Matemática Intermedia Profesora Mónica Castro Objetivos Definir y repasar los conceptos básicos de polinomios. Discutir los distintos métodos de factorización de polinomios. Establecer distintas

Más detalles

REGLAS PRÁCTICAS PARA EL CÁLCULO DE LÍMITES DE FUNCIONES

REGLAS PRÁCTICAS PARA EL CÁLCULO DE LÍMITES DE FUNCIONES REGLAS PRÁCTICAS PARA EL CÁLCULO DE LÍMITES DE FUNCIONES Cuadro resumen de las INDETERMINACIONES. Tipo I. k f () a Método: calcular los límites laterales. Ejemplo: 6 0 0 Tipo II. f () a Caso. f() es un

Más detalles

TIRAS DE FRACCIONES. Alumno: Fecha. Señala cada parte de la tira con la fracción que corresponda. Hemos hecho los dos primeros para que te fijes:

TIRAS DE FRACCIONES. Alumno: Fecha. Señala cada parte de la tira con la fracción que corresponda. Hemos hecho los dos primeros para que te fijes: Señala cada parte de la tira con la fracción que corresponda. Hemos hecho los dos primeros para que te fijes: En cuántas partes iguales está dividida la tira? Qué fracción es cada parte? En cuántas partes

Más detalles

Límite de una función

Límite de una función Límite de una función El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es decir el valor al que tienden

Más detalles

Matemáticas. Tercero ESO. Curso 2012-2013. Exámenes

Matemáticas. Tercero ESO. Curso 2012-2013. Exámenes Matemáticas. Tercero ESO. Curso 0-03. Exámenes . 9 de octubre de 0 Ejercicio. Calcular: 3 5 4 + 3 0 3 7 8 5 3 5 4 + 3 0 5 + 6 0 3 0 3 7 8 5 3 56 0 3 8 0 84 74 5 5 5 Ejercicio. Calcular: 5 6 [ ( 3 3 3 )]

Más detalles

DEL LENGUAJE DE LOS NÚMEROS AL LEGUAJE ALGEBRAICO.

DEL LENGUAJE DE LOS NÚMEROS AL LEGUAJE ALGEBRAICO. DEL LENGUAJE DE LOS NÚMEROS AL LEGUAJE ALGEBRAICO. En ocasiones, en matemáticas, necesitamos operar con números desconocidos. Para ello, se toman letras para representar esas cantidades desconocidas o

Más detalles

La unidad fraccionaria es cada una de las partes que se. Una fracción es el cociente de dos números enteros a y b,

La unidad fraccionaria es cada una de las partes que se. Una fracción es el cociente de dos números enteros a y b, Unidad fraccionaria La unidad fraccionaria es cada una de las partes que se obtienen al dividir la unidad en n partes iguales. Definición de fracción Una fracción es el cociente de dos números enteros

Más detalles

4º Grado. Cálculo de Fracciones. Suma de Fracciones con Común Denominador. Slide 2 / 73. Slide 1 / 73. Slide 4 / 73. Slide 3 / 73.

4º Grado. Cálculo de Fracciones. Suma de Fracciones con Común Denominador. Slide 2 / 73. Slide 1 / 73. Slide 4 / 73. Slide 3 / 73. Slide / New Jersey Centro para Enseñanza y Aprendizaje Iniciativa de Matemática Progresiva Este material está disponible gratuitamente en www.njctl.org y está pensado para el uso no comercial de estudiantes

Más detalles

PAQUETITO DE PROBLEMAS DE ÁLGEBRA Adriana Rabino

PAQUETITO DE PROBLEMAS DE ÁLGEBRA Adriana Rabino PAQUETITO DE PROBLEMAS DE ÁLGEBRA Adriana Rabino Los problemas fueron extraídos de B. Zolkower: Handbook of Mathematical-Didactical Activities. 2004 (con autorización de la autora). 1. Cuál es mayor? Consideremos

Más detalles

GUÍA No.3 REPARTOS PROPORCIONALES. Reparto Proporcional

GUÍA No.3 REPARTOS PROPORCIONALES. Reparto Proporcional 1 GUÍA No.3 REPARTOS PROPORCIONALES Reparto Proporcional Es un procedimiento de cálculo que permite repartir cierta cantidad, en partes proporcionales a otras. Se dice que el reparto es simple, cuando

Más detalles

IES CARPE DIEM. matemáticas

IES CARPE DIEM. matemáticas IES CARPE DIEM matemáticas 1 Los números racionales Objetivos En esta quincena aprenderás a: Identificar, representar y ordenar números racionales. Efectuar operaciones con fracciones. Expresar fracciones

Más detalles

Conoce y representa fracciones de manera gráfica usando figuras geométricas regulares.

Conoce y representa fracciones de manera gráfica usando figuras geométricas regulares. PARTES DE UN ENTERO 02 1 Conoce y representa fracciones de manera gráfica usando figuras geométricas regulares. En presentación de contenidos repasa las partes de una fracción y representa las figuras

Más detalles

4 del tiempo original, pero si hubiera ido. 5 de hora más. Cuál fue en kilómetros la distancia

4 del tiempo original, pero si hubiera ido. 5 de hora más. Cuál fue en kilómetros la distancia BACHILLERATO CO+ 0.- Pedro anduvo una determinada distancia a velocidad constante. Si hubiera ido 0,5 km/h más rápido, habría recorrido la misma distancia en 5 4 del tiempo original, pero si hubiera ido

Más detalles

P. A. U. LAS PALMAS 2005

P. A. U. LAS PALMAS 2005 P. A. U. LAS PALMAS 2005 OPCIÓN A: J U N I O 2005 1. Hallar el área encerrada por la gráfica de la función f(x) = x 3 4x 2 + 5x 2 y la rectas y = 0, x = 1 y x = 3. x 3 4x 2 + 5x 2 es una función polinómica

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES Tema 3 SISTEMAS DE ECUACIONES 1.- Se consideran las matrices 1 2 λ A = 1 1 1 y 1 3 B = λ 0, donde λ es cualquier número real. 0 2 a) Encontrar los valores de λ para los que AB es invertible b) Determinar

Más detalles

metros) de la realidad. La expresión 1:300 también puede escribirse como, que es la

metros) de la realidad. La expresión 1:300 también puede escribirse como, que es la FIGURAS SEMEJANTES Son figuras son semejantes si tienen la misma forma, pero distinto tamaño. Una figura es semejante a otra si has multiplicado a todos y cada uno de los lados de la primera por el mismo

Más detalles

BOLETIN Nº 4 MATEMÁTICAS 3º ESO Operaciones con radicales

BOLETIN Nº 4 MATEMÁTICAS 3º ESO Operaciones con radicales Radicales " Raíz: se llama raíz de un número o de una expresión algebraica a todo número o expresión algebraica que elevada a una potencia "n"; reproduce la expresión dada. " Elementos de la raíz. - Radical:

Más detalles

Operatoria algebraica

Operatoria algebraica Eje temático: Algebra y funciones Contenidos: Operatoria algebraica Ecuaciones de primer grado Nivel: 1 Medio Operatoria algebraica 1. Operatoria algebraica 1.1. Términos semejantes Un término algebraico

Más detalles

Qué son los monomios?

Qué son los monomios? Qué son los monomios? Recordemos qué es una expresión algebraica. Definición Una expresión algebraica es aquella en la que se utilizan letras, números y signos de operaciones. Si se observan las siguientes

Más detalles

UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS

UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS Unidad 6: Polinomios con coeficientes enteros. Al final deberás haber aprendido... Expresar algebraicamente enunciados sencillos. Extraer enunciados razonables

Más detalles

Tema 5: La energía mecánica

Tema 5: La energía mecánica Tema 5: La energía mecánica Introducción En este apartado vamos a recordar la Energía mecánica que vimos al principio del Bloque. 1. Energía Potencial gravitatoria 2. Energía Cinética 3. Principio de conservación

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones algebraicas: bac,

Más detalles

NOCIONES PRELIMINARES (*) 1

NOCIONES PRELIMINARES (*) 1 CONJUNTOS NOCIONES PRELIMINARES (*) 1 Conjunto no es un término definible, pero da idea de una reunión de cosas ( elementos ) que tienen algo en común. En matemática los conjuntos se designan con letras

Más detalles

CONCEPTOS ALGEBRAICOS BASICOS

CONCEPTOS ALGEBRAICOS BASICOS CONCEPTOS ALGEBRAICOS BASICOS OBJETIVOS: 1.- Expresar relaciones numéricas mediante símbolos numéricos y literales. 2.- Reconocer las expresiones algebraicas y sus elementos. 3.- Reducir y evaluar expresiones

Más detalles

Apellidos Nombre DNI / NIE Centro de examen PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS

Apellidos Nombre DNI / NIE Centro de examen PARTE COMÚN MATERIA: FUNDAMENTOS DE MATEMÁTICAS CALIFICACIÓN: PRUEBAS DE ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR DE FORMACIÓN PROFESIONAL SEPTIEMBRE DE 2012 Resolución de 27 de abril de 2012 (DOCM de 30 de abril) Instrucciones Generales PARTE COMÚN

Más detalles

Primaria Cuarto Grado Matemáticas (con QuickTables)

Primaria Cuarto Grado Matemáticas (con QuickTables) Primaria Cuarto Grado Matemáticas (con QuickTables) Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios

Más detalles

Regla de la Potencia para la Integración

Regla de la Potencia para la Integración Regla de la Potencia para la Integración Ejercicios. Calcule cada integral y compruebe los resultados derivando 1. Si comparamos con la definición entonces y Si derivamos obtenemos 2. Para que tenga la

Más detalles

Lección 49. Funciones I. Definición

Lección 49. Funciones I. Definición Lección 49 Funciones I Definición Sean A y B conjuntos. Una función f de A en B es una regla que asigna a cada elemento x A exactamante un elemento y B. El elemento y B, se denota por f (x), y decimos

Más detalles

Inmunización Pr. Dr. Pablo García Estévez

Inmunización Pr. Dr. Pablo García Estévez Pr. Dr. Pablo García Estévez La Sociedad de Valores Vega SVB ha decido ofrecer el siguiente Fondo de Inversión Garantizado: Vega SVB Lanza su nuevo FONDO GARANTÍA No pierda la oportunidad de invertir en

Más detalles

INTEGRACIÓN POR FRACCIONES PARCIALES

INTEGRACIÓN POR FRACCIONES PARCIALES IX INTEGRACIÓN POR FRACCIONES PARCIALES La integración por fracciones parciales es más un truco o recurso algebraico que algo nuevo que vaya a introducirse en el curso de Cálculo Integral. Es decir, en

Más detalles

Universidad Autónoma de la Ciudad de México Nada humano me es ajeno

Universidad Autónoma de la Ciudad de México Nada humano me es ajeno Proyectos para el curso Introducción a la programación. 1.-Desarrollador general del binomio al cuadrado. A continuación se muestra una corrida del programa que desarrolla un binomio al cuadrado, a partir

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16. f : A! B x 7! y = f(x):

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16. f : A! B x 7! y = f(x): MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #16 Función Sean A y B conjuntos. Una función f de A en B es una regla que asigna a cada elemento x 2 A exactamante un elemento

Más detalles

Cuanto más alto esté un cuerpo y cuanta más masa tenga, mayor será su energía potencial gravitatoria.

Cuanto más alto esté un cuerpo y cuanta más masa tenga, mayor será su energía potencial gravitatoria. La energía, el motor de la vida: La energía mecánica En este apartado vamos a retomar la energía mecánica que vimos al principio del bloque, pero con algo más de profundidad. Recuerda que la energía mecánica

Más detalles

TEMA 3 POLINOMIOS NOMBRE Y APELLIDOS... HOJA 1 - FECHA...

TEMA 3 POLINOMIOS NOMBRE Y APELLIDOS... HOJA 1 - FECHA... TEMA 3 POLINOMIOS NOMBRE Y APELLIDOS... HOJA 1 - FECHA... TEMA 3 EXPRESIONES ENTERAS Y POLINOMIOS Una expresión algebraica es una combinación de letras y números con operaciones matemáticas que las unen,

Más detalles

CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS

CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS Guía de Estudio para examen de Admisión de Matemáticas CONTENIDO PRESENTACIÓN... 3 I. ARITMÉTICA... 4 1. OPERACIONES CON FRACCIONES...

Más detalles

cuadrada de 3 filas y tres columnas cuyo determinante vale 2.

cuadrada de 3 filas y tres columnas cuyo determinante vale 2. PROBLEMAS DE SELECTIVIDAD. BLOQUE ÁLGEBRA MATEMÁTICAS II 0 2 0. Se dan las matrices A, I y M, donde M es una matriz de dos 3 0 filas y dos columnas que verifica M 2 = M. Obtener razonadamente: a) Todos

Más detalles

5 Expresiones algebraicas

5 Expresiones algebraicas 8948 _ 04-008.qxd /9/07 :0 Página 9 Expresiones algebraicas INTRODUCCIÓN RESUMEN DE LA UNIDAD El lenguaje algebraico sirve para expresar situaciones relacionadas con la vida cotidiana, utilizando letras

Más detalles

Si los términos no son semejantes no se pueden reducir a un total. Cuando los elementos son de la misma especie se dice que son semejantes.

Si los términos no son semejantes no se pueden reducir a un total. Cuando los elementos son de la misma especie se dice que son semejantes. Operaciones básicas con Expresiones Algebraicas (adición, sustracción, multiplicación y división) y redacta un informe Teórico práctico donde describas el procedimiento para realizar cada operación y al

Más detalles

IES Profesor Máximo Trueba Departamento de Matemáticas Curso 2010/2011 PRUEBA CDI MAYO 2008

IES Profesor Máximo Trueba Departamento de Matemáticas Curso 2010/2011 PRUEBA CDI MAYO 2008 Departamento de Matemáticas Curso 00/0 PRUEBA CDI MAYO 008. Con 39 litros de gasolina el marcador de un coche señala ¾ de depósito. Cuál es la capacidad total del depósito del coche?. Según una encuesta

Más detalles

POLINOMIOS OPERACIONES CON MONOMIOS

POLINOMIOS OPERACIONES CON MONOMIOS POLINOMIOS Una expresión algebraica es una combinación de letras y números, ligados por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las expresiones algebraicas

Más detalles

UNIDAD 6. Estadística TABLAS DE FRECUENCIAS, GRÁFICOS DE BARRAS Y POLÍGONOS DE FRECUENCIAS

UNIDAD 6. Estadística TABLAS DE FRECUENCIAS, GRÁFICOS DE BARRAS Y POLÍGONOS DE FRECUENCIAS Matemática UNIDAD 6. Estadística 1 Medio GUÍA N 5 TABLAS DE FRECUENCIAS, GRÁFICOS DE BARRAS Y POLÍGONOS DE FRECUENCIAS Cada día aparecen gráficos o datos, por ejemplo en la prensa o en televisión. Quién

Más detalles

Lección 9: Polinomios

Lección 9: Polinomios LECCIÓN 9 c) (8 + ) j) [ 9.56 ( 9.56)] 8 q) (a x b) d) ( 5) 4 k) (6z) r) [k 0 (k 5 k )] e) (. 0.) l) (y z) s) (v u ) 4 f) ( 5) + ( 4) m) (c d) 7 t) (p + q) g) (0 x 0.) n) (g 7 g ) Lección 9: Polinomios

Más detalles

Como Luis debe a Ana 5 euros podemos escribir: 5 euros. Como Luis debe a Laura 6 euros podemos escribir: 6 euros.

Como Luis debe a Ana 5 euros podemos escribir: 5 euros. Como Luis debe a Laura 6 euros podemos escribir: 6 euros. Ejercicios de números enteros con solución 1 Luis debe 5 euros a Ana y 6 euros a Laura. Expresa con números enteros las cantidades que debe Luis. Como Luis debe a Ana 5 euros podemos escribir: 5 euros.

Más detalles

El interés y el dinero

El interés y el dinero El interés y el dinero El concepto de interés tiene que ver con el precio del dinero. Si alguien pide un préstamo debe pagar un cierto interés por ese dinero. Y si alguien deposita dinero en un banco,

Más detalles

Material N 15 GUÍA TEÓRICO PRÁCTICA Nº 12

Material N 15 GUÍA TEÓRICO PRÁCTICA Nº 12 C u r s o : Matemática Material N 5 GUÍA TEÓRICO PRÁCTICA Nº UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS EVALUACIÓN DE EXPRESIONES ALGEBRAICAS Evaluar una epresión algebraica consiste en sustituir

Más detalles

si con 24 g de magnesio reaccionan 6 g de oxígeno pues con 6 g reaccionarán x

si con 24 g de magnesio reaccionan 6 g de oxígeno pues con 6 g reaccionarán x Hoja número 1. 1) Si 24 g de magnesio se combinan exactamente con 16 g de oxígeno para formar óxido de magnesio, a) cuántos gramos de óxido se habrán formado?; b) a partir de 6 g de magnesio cuántos gramos

Más detalles

DESIGUALDADES. En esta sección trataremos las desigualdades lineales en una variable. Ellas son las que se pueden escribir en la forma ax + b > 0, ( )

DESIGUALDADES. En esta sección trataremos las desigualdades lineales en una variable. Ellas son las que se pueden escribir en la forma ax + b > 0, ( ) DESIGUALDADES LINEALES DESIGUALDADES En esta sección trataremos las desigualdades lineales en una variable. Ellas son las que se pueden escribir en la forma ax + b > 0, ( ) donde a y b son constantes,

Más detalles

GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO OCTAVO

GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO OCTAVO GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO OCTAVO IDENTIFICACIÓN AREA: Matemáticas. ASIGNATURA: Matemáticas. DOCENTE. Juan Gabriel Chacón c. GRADO. Octavo. PERIODO: Segundo UNIDAD: Polinomios TEMA: Expresiones

Más detalles

Tema 7. Problemas de ecuaciones de primero y segundo grado

Tema 7. Problemas de ecuaciones de primero y segundo grado Mat º ESO Tema 7. Problemas de ecuaciones de primero y segundo grado Llámale x La x es la letra más famosa entre los números. La letra x suele emplearse para sustituir a un número del que no se sabe su

Más detalles

Unidad 3. 1. En qué casos serán iguales los calores de reacción a presión constante (Q p ) y a volumen constante (Q v )? Razone la respuesta ( 2 p)

Unidad 3. 1. En qué casos serán iguales los calores de reacción a presión constante (Q p ) y a volumen constante (Q v )? Razone la respuesta ( 2 p) Unidad 3 OPCIÓN A 1. En qué casos serán iguales los calores de reacción a presión constante (Q p ) y a volumen constante (Q v )? Razone la respuesta ( 2 p) La ecuación que relaciona Q p y Q v es: Q p =

Más detalles

PENDIENTES 2º ESO. Segundo examen DEPARTAMENTO DE MATEMÁTICAS. Preparación del segundo examen de recuperación de MATEMÁTICAS DE 2º ESO Curso 2013-2014

PENDIENTES 2º ESO. Segundo examen DEPARTAMENTO DE MATEMÁTICAS. Preparación del segundo examen de recuperación de MATEMÁTICAS DE 2º ESO Curso 2013-2014 014 015 Preparación del segundo examen de recuperación de MATEMÁTICAS DE º ESO Curso 013-014 PENDIENTES º ESO Segundo examen DEPARTAMENTO DE MATEMÁTICAS Preparación del segundo examen de recuperación de

Más detalles

Coeficientes 43 X = 43 X partes literales - 7 a 3 = - 7 a 3

Coeficientes 43 X = 43 X partes literales - 7 a 3 = - 7 a 3 APUNTES Y EJERCICIOS DEL TEMA 3 1-T 3--2ºESO EXPRESIONES ALGEBRAICAS: Son combinaciones de n os y letras unidos con operaciones matemáticas (aritméticas), que generalmente suelen ser sumas, restas, multiplicaciones

Más detalles

1. Los calores de combustión del metano y butano son 890 kj/mol y 2876 kj/mol respectivamente

1. Los calores de combustión del metano y butano son 890 kj/mol y 2876 kj/mol respectivamente . Los calores de combustión del metano y butano son 890 kj/mol y 876 kj/mol respectivamente Butano: C 4 H 0 Metano: CH 4 a) Cuando se utiliza como combustible Cual generaría más calor para la misma masa

Más detalles

Tema 5. Medidas de posición Ejercicios resueltos 1

Tema 5. Medidas de posición Ejercicios resueltos 1 Tema 5. Medidas de posición Ejercicios resueltos 1 Ejercicio resuelto 5.1 Un Centro de Estudios cuenta con 20 aulas, de las cuales 6 tienen 10 puestos, 5 tienen 12 puestos, 4 tienen 15 puestos, 3 tienen

Más detalles

Multiplicación. Adición. Sustracción

Multiplicación. Adición. Sustracción bernardsanz TERMINOLOGÍA ALGEBRAICA Algebra: generalización de la aritmética, la cual representa cantidades por medio de símbolos en lugar de números concretos, estos símbolos representan números cualesquiera.

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

GUÍA PRÁCTICA DE GEOMETRÍA ÁREA Y PERÍMETRO DE FIGURAS PLANAS. Diseñada por: Esp. María Cristina Marín Valdés

GUÍA PRÁCTICA DE GEOMETRÍA ÁREA Y PERÍMETRO DE FIGURAS PLANAS. Diseñada por: Esp. María Cristina Marín Valdés GUÍA PRÁCTICA DE GEOMETRÍA ÁREA Y PERÍMETRO DE FIGURAS PLANAS Diseñada por: Esp. María Cristina Marín Valdés INSTITUCIÓN EDUCATIVA EDUARDO FERNÁNDEZ BOTERO Área de Matemáticas Amalfi 2011 ÁREA Y PERÍMETRO

Más detalles

Tema 2. Conceptos topográficos

Tema 2. Conceptos topográficos Tema 2. Conceptos topográficos Se puede definir la Topografía como el conjunto de métodos e instrumentos necesarios para representar gráfica o numéricamente el terreno con todos sus detalles, naturales

Más detalles

INTRO. LÍMITES DE SUCESIONES

INTRO. LÍMITES DE SUCESIONES INTRO. LÍMITES DE SUCESIONES Con el estudio de límites de sucesiones se inaugura el bloque temático dedicado al cálculo (o análisis) infinitesimal. Este nombre se debe a que se va a especular con cantidades

Más detalles

EVALUACIÓN SABER 2004 MATEMÁTICA Y LENGUAJE ESTUDIO DE CONTRASTE

EVALUACIÓN SABER 2004 MATEMÁTICA Y LENGUAJE ESTUDIO DE CONTRASTE EVALUACIÓN SABER 2004 MATEMÁTICA Y LENGUAJE ESTUDIO DE CONTRASTE ANÁLISIS DE LOS ÍTEMS MÁS FÁCILES Y MÁS DIFÍCILES Autores Martha Castillo Grace Vesga Grupo Evaluación de la Educación Básica y Media Subdirección

Más detalles

Proceso Selectivo para la XXII IMC, Bulgaria

Proceso Selectivo para la XXII IMC, Bulgaria Proceso Selectivo para la XXII IMC, Bulgaria Facultad de Ciencias UNAM Instituto de Matemáticas UNAM SUMEM Indicaciones Espera la indicación para voltear esta hoja. Mientras tanto, lee estas instrucciones

Más detalles

Recuerdas qué es? Expresión algebraica. Es una combinación de números y letras relacionados mediante operaciones aritméticas.

Recuerdas qué es? Expresión algebraica. Es una combinación de números y letras relacionados mediante operaciones aritméticas. Recuerdas qué es? Expresión algebraica Es una combinación de números y letras relacionados mediante operaciones aritméticas. Propiedad distributiva de la multiplicación respecto de la suma Si a, b y c

Más detalles

Glosario de términos. Introducción a las Matemáticas Financieras

Glosario de términos. Introducción a las Matemáticas Financieras Introducción a las Matemáticas Financieras Carlos Mario Morales C 2012 1 Anualidades y gradientes UNIDAD 3: ANUALIDADES Y GRADIENTES OBJETIVO Al finalizar la unidad los estudiantes estarán en capacidad

Más detalles

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2011 - Propuesta B 1. Queremos invertir una cantidad de dinero en dos tipos

Más detalles

Programa de Algebra Superior Caracterización de la asignatura: Esta materia se agregó al plan de estudios de las ingenierías como reforzamiento de

Programa de Algebra Superior Caracterización de la asignatura: Esta materia se agregó al plan de estudios de las ingenierías como reforzamiento de Programa de Algebra Superior Caracterización de la asignatura: Esta materia se agregó al plan de estudios de las ingenierías como reforzamiento de las bases matemáticas para mejorar el aprendizaje de los

Más detalles

Espacios Vectoriales www.math.com.mx

Espacios Vectoriales www.math.com.mx Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................

Más detalles

DESTREZAS BÁSICAS EN MATEMÁTICAS

DESTREZAS BÁSICAS EN MATEMÁTICAS PRUEBA DE EVALUACIÓN 4º ESO DESTREZAS BÁSICAS EN MATEMÁTICAS Pregunta 1.- La proporción entre el área coloreada y el área total de ese cuadrado, puede expresarse mediante la fracción: A. B. C. D. 7 8 4

Más detalles

Tema 3: Sistemas Combinacionales

Tema 3: Sistemas Combinacionales Ejercicios T3: Sistemas Combinacionales Fundamentos de Tecnología de Computadores Tema 3: Sistemas Combinacionales 1. Analizar el siguiente circuito indicando la expresión algebraica que implementa, la

Más detalles

El dinero proporciona algo de felicidad. Pero a partir de cierto momento el dinero sólo proporciona más dinero

El dinero proporciona algo de felicidad. Pero a partir de cierto momento el dinero sólo proporciona más dinero Anualidades Vencidas, Anticipadas y Diferidas. El dinero proporciona algo de felicidad. Pero a partir de cierto momento el dinero sólo proporciona más dinero Neil Simon. Objetivo de la sesión: Conocer

Más detalles

Colegio Hermanos Carrrera. Departamento de Matemática Prof. Roberto Medina

Colegio Hermanos Carrrera. Departamento de Matemática Prof. Roberto Medina Colegio Hermanos Carrrera Departamento de Matemática Prof. Roberto Medina Unidad 2 Objetivos: - Conceptos algebraicos básicos - Valoración de expresiones algebraicas - Reducción de términos semejantes

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS

OBJETIVOS CONTENIDOS PROCEDIMIENTOS 82652 _ 0275-0286.qxd 27/4/07 1:20 Página 275 Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender

Más detalles

PRUEBA DE NIVEL DE ACCES

PRUEBA DE NIVEL DE ACCES PRUEBA DE NIVEL DE ACCES NOMBRE Y APELLIDOS:... 1. Microsoft Access es: Una base de datos relacional. Una base de datos no relacional. Una base de datos documental. Ninguna de las afirmaciones es correcta.

Más detalles

Funciones Básicas de la Hoja de Cálculo

Funciones Básicas de la Hoja de Cálculo 1 Funciones Básicas de la Hoja de Cálculo Objetivos del capítulo Conocer el concepto y características de una hoja de cálculo. Conocer los elementos más importantes de una hoja de cálculo. Explicar la

Más detalles

UNIDAD 1 PLAN DE APOYO

UNIDAD 1 PLAN DE APOYO UNIDAD 1 PLAN DE APOYO NÚMEROS ENTEROS 7 Básico Autor Thomas Bustos Ortiz I INDICE TAREAS CODICIONES FICHAS Ordenan y comparan números naturales Suman y restan de números naturales Conocen números enteros

Más detalles

Organización de Computadoras 2014. Apunte 2: Sistemas de Numeración: Punto Flotante

Organización de Computadoras 2014. Apunte 2: Sistemas de Numeración: Punto Flotante Organización de Computadoras 2014 Apunte 2: Sistemas de Numeración: Punto Flotante La coma o punto flotante surge de la necesidad de representar números reales y enteros con un rango de representación

Más detalles

EL GRADO Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO

EL GRADO Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO RECONOCER OBJETIVO EL GRADO Y LOS ELEMENTOS QUE ORMAN UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma algebraica de monomios, que son los términos del polinomio.

Más detalles

Memoria RAM (Random Access Memory/Memoria de acceso aleatorio)

Memoria RAM (Random Access Memory/Memoria de acceso aleatorio) Memoria RAM (Random Access Memory/Memoria de acceso aleatorio) Qué es la memoria RAM? Es una memoria volátil, lo que quiere decir que cuando apagamos el PC todo lo alojado en esa memoria se pierde. Cuál

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas 829566 _ 0249-008.qxd 27/6/08 09:21 Página 27 Polinomios y fracciones algebraicas INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de

Más detalles

MATEMATICAS I SESIÓN 1 DEFINICIONES FUNDAMENTALES (REDUCCIÓN DE TERMINOS SEMEJANTES)

MATEMATICAS I SESIÓN 1 DEFINICIONES FUNDAMENTALES (REDUCCIÓN DE TERMINOS SEMEJANTES) MATEMATICAS I SESIÓN 1 DEFINICIONES FUNDAMENTALES (REDUCCIÓN DE TERMINOS SEMEJANTES) Introducción: El alumno comprenderá qué estudia el algebra, así como algunas definiciones importantes como son: expresión

Más detalles

Ministerio de Educación Nacional República de Colombia

Ministerio de Educación Nacional República de Colombia Ministerio de Educación Nacional República de Colombia Matemáticas Fundación Manuel Mejía Andrés Casas Moreno Aura Susana Leal Aponte Catalina Barreto Garzón Coordinación del proyecto María Fernanda Campo

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman V A R I A B L ES, I N C Ó G N I T A S o

Más detalles

Análisis y evaluación de proyectos

Análisis y evaluación de proyectos Análisis y evaluación de proyectos UNIDAD 5.- MÉTODOS DE EVALUACIÓN DEL PROYECTO José Luis Esparza A. Métodos de Evaluación MÉTODOS DE EVALUACIÓN QUE TOMAN EN CUENTA EL VALOR DEL DINERO A TRAVÉS DEL TIEMPO.

Más detalles

Capítulo II Límites y Continuidad

Capítulo II Límites y Continuidad (Apuntes en revisión para orientar el aprendizaje) INTRODUCCIÓN Capítulo II Límites y Continuidad El concepto de límite, después del de función, es el fundamento matemático más importante que ha cimentado

Más detalles

CÓMO CALCULAR EL CONSUMO DE ENERGÍA ELÉCTRICA DENTRO DEL HOGAR

CÓMO CALCULAR EL CONSUMO DE ENERGÍA ELÉCTRICA DENTRO DEL HOGAR CÓMO CALCULAR EL CONSUMO DE ENERGÍA ELÉCTRICA DENTRO DEL HOGAR Mediante una serie de sencillos pasos, a continuación aprenderás a calcular cuánta energía eléctrica se consume en tu hogar. Sabrás que hay

Más detalles

CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA. (Se utiliza el valor de la función en el extremo izquierdo de cada subintervalo)

CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA. (Se utiliza el valor de la función en el extremo izquierdo de cada subintervalo) CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA El problema del área, el problema de la distancia tanto el valor del área debajo de la gráfica de una función como la distancia recorrida por un objeto

Más detalles

INSTITUTO VALLADOLID PREPARATORIA página 37

INSTITUTO VALLADOLID PREPARATORIA página 37 INSTITUTO VALLADOLID PREPARATORIA página 37 página 38 SUMA DE FRACCIONES CONCEPTO Las cuatro operaciones fundamentales, suma, resta, multiplicación y división, con fracciones algebraicas se realizan bajo

Más detalles

4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN

4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN 4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN Bloque 2. POLINOMIOS. (En el libro Tema 3, página 47) 1. Definiciones. 2. Valor numérico de una expresión algebraica. 3. Operaciones con polinomios: 3.1. Suma,

Más detalles

Cuatro Problemas de Álgebra en la Olimpiada Internacional de Matemáticas.

Cuatro Problemas de Álgebra en la Olimpiada Internacional de Matemáticas. Boletín de la Asociación Matemática Venezolana, Vol. XV, No. 1 (2008) 131 Cuatro Problemas de Álgebra en la Olimpiada Internacional de Matemáticas. Rafael Sánchez Lamoneda Introducción. El presente artículo

Más detalles

a) Un número par I) 2n 1 b) Un número impar II) x, x 1 c) Un número y el que le sigue III) 3a d) El triple de un número IV) 2z x 6 b) e)

a) Un número par I) 2n 1 b) Un número impar II) x, x 1 c) Un número y el que le sigue III) 3a d) El triple de un número IV) 2z x 6 b) e) Polinomios El 6 de septiembre del 00 se celebró el gran Premio de Singapur, la 5.ª prueba del mundial de Fórmula. La carrera constaba de 6 vueltas a un circuito de 5 067 m de longitud. Fernando Alonso,

Más detalles

Matemáticas I (Álgebra) Manual de bachillerato. Primera Edición, 2009 Compilación y Asesoría Pedagógica Erika Alejandra López Estrada

Matemáticas I (Álgebra) Manual de bachillerato. Primera Edición, 2009 Compilación y Asesoría Pedagógica Erika Alejandra López Estrada Matemáticas I (Álgebra) Manual de bachillerato Primera Edición, 2009 Compilación y Asesoría Pedagógica Erika Alejandra López Estrada Coordinador editorial Alan Santacruz Farfán Revisión Alejandro Vázquez

Más detalles

(a+b) (a b)=a 2 b 2 OBJETIVOS CONTENIDOS PROCEDIMIENTOS

(a+b) (a b)=a 2 b 2 OBJETIVOS CONTENIDOS PROCEDIMIENTOS Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender el concepto de polinomio y otros asociados

Más detalles

Área: Matemática ÁLGEBRA

Área: Matemática ÁLGEBRA Área: Matemática ÁLGEBRA Prof. HENRY AYTE MORALES FICHA DE TRABAJO RECUPERACIÓN 1ro SEC A, B y C I. TEORÍA DE EXPONENTES 1. DEFINICIÓN Es un conjunto de fórmulas que relaciona a los exponentes de las expresiones

Más detalles

Materia: Matemáticas Curso 2015-2016. Alumno/a Curso: 4º ESO

Materia: Matemáticas Curso 2015-2016. Alumno/a Curso: 4º ESO Materia: Matemáticas Curso 015-016 Alumno/a Curso: º ESO A continuación se describen los aprendizajes no adquiridos, así como las actividades programadas, las estrategias y los criterios de evaluación

Más detalles

IES MARIA INMACULADA MATEMÁTICAS 2º E.S.O. Curso 2010-2011 TEMA : LENGUAJE ALGEBRÁICO

IES MARIA INMACULADA MATEMÁTICAS 2º E.S.O. Curso 2010-2011 TEMA : LENGUAJE ALGEBRÁICO IES MARIA INMACULADA MATEMÁTICAS º E.S.O. Curso 010-011 GUIÓN DEL TEMA 1. Lenguaje numérico y lenguaje algebraico.. Epresión algebraica.. Valor numérico de una epresión algebraica.. Monomios. 5. Grado

Más detalles

Operaciones Fundamentales del Álgebra. Operaciones con Fracciones Algebraicas.. E xponentes y Radicales 99. Ecuaciones Lineales o de Primer Grado

Operaciones Fundamentales del Álgebra. Operaciones con Fracciones Algebraicas.. E xponentes y Radicales 99. Ecuaciones Lineales o de Primer Grado ÍNDICE COMPETENCIA Operaciones Fundamentales del Álgebra 5 COMPETENCIA Operaciones con Fracciones Algebraicas.. 7 COMPETENCIA E ponentes y Radicales 99 COMPETENCIA Ecuaciones Lineales o de Primer Grado

Más detalles

26 Apuntes de Matemáticas II para preparar el examen de la PAU

26 Apuntes de Matemáticas II para preparar el examen de la PAU 6 Apuntes de Matemáticas II para preparar el examen de la PAU Unidad. Funciones.Continuidad TEMA FUNCIONES. CONTINUIDAD. 1. Definición de Continuidad. Tipos de discontinuidades 3. Continuidad de las funciones

Más detalles
Sitemap