Multiplicación. Adición. Sustracción


Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Multiplicación. Adición. Sustracción"

Transcripción

1 bernardsanz TERMINOLOGÍA ALGEBRAICA Algebra: generalización de la aritmética, la cual representa cantidades por medio de símbolos en lugar de números concretos, estos símbolos representan números cualesquiera. Proceso algebraico: un proceso matemático es algebraico si contiene una o varias de las operaciones de adición, sustracción, multiplicación, división, potenciación y radicación, aplicadas una o varias veces en cualquier orden a números cualesquiera y a símbolos cualesquiera. Multiplicación Adición Potenciación 5xy 3z a 3 Sustracción c Radicación División Expresión Algebraica: Es una combinación de números y literales que representan números cualesquiera x 5xy y, a b, 7xy z x y z Término: es una expresión que solo contiene productos y cocientes de números y literales x 5 x 6 x y, 3 x, factor Númerico, factor literal 4 4 3y 3 y Los factores numéricos siempre representan números reales a los cuales se les llama coeficientes, mientras que los factores literales representan números cualesquiera, también se les llama variables o también incógnitas. Nota: cuando una literal o término no tiene factor numérico, se sobreentiende que el coeficiente numérico es uno. TIPOS COMUNES DE EXPRESIONES ALGEBRAICAS Monomio: Expresión algebraica de un solo término: Binomio: Expresión algebraica de términos: x y, 3 xyz, 5ab 7x y 3xyz 3 4 Trinomio: Expresión algebraica de tres términos: 3x x 1 Polinomio: Expresión algebraica de más de un término, por lo tanto el binomio y el trinomio son polinomios. Elaboro: IQ Bernardino Sánchez Díaz 1

2 bernardsanz Grado de una Expresión Algebraica Monomio o término. Es la suma de todos los exponentes de la parte literal del término: 3 4x y z 3 1 6, el término es de grado 6. Polinomio. Es el correspondiente al término de mayor grado cuyo coeficiente sea distinto de cero: x y 4yz x y por lo tanto el polinomio es de grado Nota: por default si una literal carece de exponente, este será uno. Símbolos de agrupación Son ( ), [ ], { }, consideran como una sola cantidad. Supresión de signos de agrupación:, etc. Se emplean para indicar que los términos encerrados en ellos se 1. Si un signo " " precede al símbolo de agrupación, dicho símbolo se puede suprimir sin modificar los términos que contiene.. Si un signo " " precede al signo de agrupación, dicho símbolo se puede suprimir cambiando el signo de cada uno de los términos que contiene (ley de los signos). 3. Si en una expresión figura más de un símbolo de agrupación, para eliminarlos se comienza por los más interiores (los que se abren y después de ciertas operaciones se cierran, sin que otro signo de agrupación se abra dentro de este). SUMA Y RESTA ALGEBRAICA La suma y resta algebraica está basada en la reducción de términos semejantes. Definición: los términos semejantes son aquellos que solo se diferencian en su coeficiente numérico. 7 xy, xy ; 3 x y, 1 y x 4 4 Reducción: es hacer algo más pequeño, en Álgebra es hacer más sencilla una expresión algebraica. Reducción de términos semejantes: Identificar los términos que sean semejantes, realizar la suma o resta algebraica de los coeficientes numéricos, es importante recordar que la parte algebraica no cambia (las leyes de los exponentes y radicales solo se aplican a la multiplicación y a la división). Elaboro: IQ Bernardino Sánchez Díaz

3 bernardsanz Ejemplo 1: x y x y y x x y x y x y x y xz x y x y xz 5x y 4x y xz Ejemplo : 10 x y x 3 y 6 10 x y x 3 y 6 10 x x 3 MULTIPLICACIÓN Y DIVISIÓN ALGEBRAICA 10 x x Las operaciones de multiplicación y división algebraica respetan las leyes de los exponentes y los radicales, así como las leyes de los signos. Leyes de los Exponentes m n m n 1.) a a a.) 3.) 4.) 5.) 6.) a a 1.) Leyes de los Radicales 1/ n a m m m m n m n n a a a.) n a m a n n a m n mn n a a a m 3.) m m m n a n n n a b ab ab a b 4.) m n a mn a n m a m m a a m b b m r a b a n s a b mn b rs 5.) n n a b n a b Las leyes de los signos 1. Signos iguales, el resultado es positivo.. Signos contrarios, el resultado es negativo. MULTIPLICACIÓN 1) Multiplicación de un monomio por un monomio. 8x yz xy z 8() x ( x) y y z z 16x y z ) Multiplicación de un monomio por un polinomio. 3x yzxy 3xz 4yz 3x yzxy 3x yz3xz 3x yz4 yz 6x y z 9x yz 1x y z 3 3 Elaboro: IQ Bernardino Sánchez Díaz 3

4 bernardsanz 3) Multiplicación de polinomios. 8x 3 1x y 6xy 9y 3 x 3y 8x 3 x 3y 1x yx 3y 6xy x 3y 9y 3 x 3y Realizando las multiplicaciones de los términos por los binomios y reduciendo los términos semejantes tenemos: x 4x y 3 4x y 16x 4x y 7y x y 1x y 18xy xy 7y 4 Otra forma de hacer esta multiplicación es como las que se hacen con números: 8x 1x y 6xy 9y 3 3 x3y 4x y 36x y 18xy 7y x 4x y 1x y 18xy x 4 x y 7y 4 4 Para realizar este tipo de multiplicación es recomendable ordenar los polinomios en forma descendente con respecto a una literal, en nuestro ejemplo se ordeno con respecto a x, de esta forma forzamos a que los productos se vayan ordenando por columnas y de esta forma sea fácil la reducción de los términos semejantes. DIVISIÓN División de Monomios Ejemplos: 6a b 6a 1) b 3ab a a 3 3 4Q R 4 Q R ) QR QR Q R 3 3 8s t 8 s t 4s 3) 3 3 s t s t t Elaboro: IQ Bernardino Sánchez Díaz 4

5 bernardsanz División de polinomios entre monomios Para este tipo de división empleamos la propiedad de las fracciones a c a c pero al revés. b b b 3 3 8a b 6a b 1a b 8a b 6a b 1ab 4a b 3ab 6a ab ab ab ab x y 4x y 6x y 10xy 8x y 4x y 6xy 10xy xy xy xy xy xy División de Polinomios Procedimiento: 4x y xy 3x y 5 1) Se ordenan los términos de ambos polinomios según las potencias decrecientes de una de las letras comunes a los dos polinomios. ) Se divide el primer término del dividendo por el primero del divisor, con lo que resulta el primer término del cociente. 3) Se multiplica el primer término del cociente por el divisor y se resta del dividendo obteniéndose un nuevo dividendo. 4) Con el dividendo del paso 3, se repiten las operaciones del paso y 3 hasta que se obtenga un residuo igual a cero o de grado menor que el del divisor. Ejemplo: dividir x x x x x x x x ordenamos x 3x x 3x x 3x x 3x x 3x x x Cociente x x 3x x 6x x 4 3 x 3x 6 Divisor x 6x 4x x 3x x 3 3x 9x 6x 6x 5x 6x 18x 1 13x 14 Dividendo Residuo Por lo tanto: 4 3 x 3 x x x x 3x 6 x x 3x x 3x Elaboro: IQ Bernardino Sánchez Díaz 5

6 bernardsanz PRODUCTOS NOTABLES Y FACTORIZACIÓN Objetivo: El estudiante será capaz de realizar las operaciones de productos notables y factorización algebraica, con el fin de resolver de una forma sencilla las operaciones de multiplicación y simplificación algebraica, además de comprender que las operaciones de factorización y productos notables las podemos considerar como operaciones inversas. PRODUCTOS NOTABLES Introducción Al calcular el área de la siguiente figura dividida en partes tenemos que sumar cada área parcial, es decir, tenemos que sumar el área de dos cuadrados y dos rectángulos: A x x y y x y x y x y xy x xy y Este mismo resultado se obtiene al multiplicar la base por la altura de la figura: x yx y x xy xy y x xy y Lo que nos lleva a que un binomio al cuadrado se convierte en un trinomio cuadrado perfecto: x y x xy y Definición: Se llama producto notable a ciertos productos que cumplen reglas fijas y cuyo resultado puede ser escrito por simple inspección, es decir, sin verificar la multiplicación. 1) Binomio al cuadrado Un binomio cualquiera al cuadrado es igual a la suma del primer término al cuadrado más el duplo del primer término por el segundo término, más el cuadrado del segundo término. Ejemplo: a b a ab b a b a ab b a b a ab b 3x y 3x 3x y y 9x 1x y 4y Elaboro: IQ Bernardino Sánchez Díaz 6

7 bernardsanz ) Cubo de un binomio Un binomio elevado a la potencia tres, es igual al cubo del primer término, más tres veces el cuadrado del primer término por el segundo término, más el triplo del primer término por el cuadrado del segundo término, más el cubo del segundo término a b a 3a b 3ab b a b a 3a b 3ab b a b a 3a b 3ab b Ejemplo: x y 3x 3 3x y 3 3x y y 7x 54x y 36x y 8y ) Producto de dos binomios con término común El producto de dos binomios con término común es igual al cuadrado del término común, más el producto del término común por la suma de los términos no comunes, más el producto de los términos no comunes. Ejemplo: x a x b x a b x ab xy 8 xy 3 xy 8 3 xy 8(3) x y 5xy 4 4) Producto de dos binomios conjugados Binomios conjugados: son aquellos que tienen su primer término idéntico, incluso en el signo y su segundo término solo difiere en el signo. 3a b y 3a b El producto de dos binomios conjugados es igual a la suma del primer término (mismo signo) al cuadrado menos el segundo término (signos contrarios) al cuadrado. Ejemplo: a ba b a b 3x y 3x y 3x y 9x 4y Elaboro: IQ Bernardino Sánchez Díaz 7

8 bernardsanz FACTORIZACIÓN Ahora consideremos el siguiente caso referente a un área: Area Total x xy y x x x y x y y y Factores comunes xx y yx y Area Total x yx y x y A este proceso algebraico se le llama factorización o descomposición en factores. Definición: los factores de una expresión algebraica dada son dos o más expresiones algebraicas que multiplicadas entre si originan la primera. Por ejemplo x 7x 6 se puede expresar como el producto de dos factores x1 x 6 : x x x x También: x xy 8y x 4yx y Este proceso de descomposición en factores se aplica en polinomios de coeficientes enteros de preferencia. En la descomposición en factores se pueden efectuar cambios de signo, por ejemplo: x 7x 6 x 1 x 6 1 x 6 x 1) Factor Común ac ad ac d Tipos de Factorización El factor común debe aparecer en todos los términos a factorizar. Dicho factor común se obtiene tomando al coeficiente numérico menor, siempre y cuando sean múltiplos, si no lo son se toma a la unidad y a las partes literales con menor exponente, recordando que estas literales deben aparecer en todos los términos. Ejemplos: 3 1) 6 3 x y x x y x 3 ) x y xy x y xy x y x xy x x y 3) 7x y 18x y 36x y 9x y 3x xy 4y Elaboro: IQ Bernardino Sánchez Díaz 8

9 x x x x x x 4x 3x 1 4 x 3x 1 4) ) Diferencia de Cuadrados Una diferencia de cuadrados se descompone en dos binomios conjugados: a b a b a b Ejemplos: 1) x 5 x 5 x 5 ) x y x y x y 3) 3x 1 3 x 4 3 x x 4) x 9 x 3 x 3 3) Trinomio Cuadrado Perfecto bernardsanz Un trinomio es cuadrado perfecto si dos términos son cuadrados perfectos y el tercero es igual al duplo de la raíz cuadrada del producto de aquellos. Un trinomio cuadrado perfecto se convierte en un binomio al cuadrado. a ab b a b a ab b a b Ejemplo: a ab b a b x xy y x y 9 3, 4, 3 1 x x y y x y xy 4) Trinomio de la forma x a b x ab x ax b De esta expresión viene la frase: dos números que multiplicados den ab y que sumados den a b. Ejemplos: x 6x 8 x 4x Vemos que 8 puede ser: pero 4 6 mientras que x 3 18x x x x x 18 3 ( 16)( ) El 3 lo podemos descomponer de varias formas mientras que Elaboro: IQ Bernardino Sánchez Díaz 9

10 5) Método de las Tijeras bernardsanz Este método se recomienda cuando el coeficiente del término cuadrático es distinto de uno. Para el trinomio 6x 3x 18 puede tener los siguientes factores: podemos considerar que para el término cuadrático x se x x x x x y para el término independiente: Se eligió 3x x y 9, se colocan estos factores bajo el trinomio y se multiplica cruzado, simulando unas tijeras abiertas y la suma de esta multiplicación tiene que dar por resultado el término lineal (3x). Una vez hecho esto cerramos las tijeras para tomar los factores del trinomio: 6x 3x 18 3 x 4x x 9 7x 3x 6x 3x 18 3x x 9 3 x x 9 6) Agrupación de Términos Este método hace uso de bastante experiencia por parte del estudiante, y básicamente consiste en identificar a factores comunes. Ejemplos: 1) ac bc ad bd ca b d a b a bc d ) x 3 x y xy y 3 x x y y x y x yx y 3) 6x 4ax 9bx 6ab x3x a 3b 3x a 3x ax 3b BIBLIOGRAFÍA: 1. Baldor A., Algebra, ediciones y distribuciones códice, España, Spiegel M., Algebra Superior, McGraw Hill, México, Alfonse Gobran, Algebra Elemental, Ed. Iberoamérica, México, Phillips, Butts y Shaughnessy, Algebra con Aplicaciones, Ed. Oxford, México, Angel, Algebra Elemental, Pearson Educación, México, Lehmann Charles, Algebra, Limusa, México, 000. Elaboro: IQ Bernardino Sánchez Díaz 10

11 1 Ejercicios de Apoyo Operaciones Algebraicas

12

13 3 Realice las siguientes operaciones:

14 4 Realice las siguientes operaciones:

15 5

16 6 Factorice las siguientes expresiones algebraicas:

17 7

18 8 Factorice las siguientes expresiones algebraicas:

19 9 Factorice las siguientes expresiones algebraicas:

20 10 Resuelve cada una de las siguientes ecuaciones:

21 11

22 1 Resuelve cada una de las siguientes ecuaciones:

CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS

CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS Guía de Estudio para examen de Admisión de Matemáticas CONTENIDO PRESENTACIÓN... 3 I. ARITMÉTICA... 4 1. OPERACIONES CON FRACCIONES...

Más detalles

EXPRESIONES ALGEBRAICAS. POLINOMIOS

EXPRESIONES ALGEBRAICAS. POLINOMIOS EXPRESIONES ALGEBRAICAS. POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones algebraicas: bac,

Más detalles

Operatoria algebraica

Operatoria algebraica Eje temático: Algebra y funciones Contenidos: Operatoria algebraica Ecuaciones de primer grado Nivel: 1 Medio Operatoria algebraica 1. Operatoria algebraica 1.1. Términos semejantes Un término algebraico

Más detalles

MATEMATICAS I SESIÓN 1 DEFINICIONES FUNDAMENTALES (REDUCCIÓN DE TERMINOS SEMEJANTES)

MATEMATICAS I SESIÓN 1 DEFINICIONES FUNDAMENTALES (REDUCCIÓN DE TERMINOS SEMEJANTES) MATEMATICAS I SESIÓN 1 DEFINICIONES FUNDAMENTALES (REDUCCIÓN DE TERMINOS SEMEJANTES) Introducción: El alumno comprenderá qué estudia el algebra, así como algunas definiciones importantes como son: expresión

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Un grupo de variables representadas por letras junto con un conjunto de números combinados con operaciones de suma, resta, multiplicación, división, potencia o etracción de raíces

Más detalles

Lección 9: Polinomios

Lección 9: Polinomios LECCIÓN 9 c) (8 + ) j) [ 9.56 ( 9.56)] 8 q) (a x b) d) ( 5) 4 k) (6z) r) [k 0 (k 5 k )] e) (. 0.) l) (y z) s) (v u ) 4 f) ( 5) + ( 4) m) (c d) 7 t) (p + q) g) (0 x 0.) n) (g 7 g ) Lección 9: Polinomios

Más detalles

POLINOMIOS OPERACIONES CON MONOMIOS

POLINOMIOS OPERACIONES CON MONOMIOS POLINOMIOS Una expresión algebraica es una combinación de letras y números, ligados por los signos de las operaciones: adición, sustracción, multiplicación, división y potenciación. Las expresiones algebraicas

Más detalles

martilloatomico@gmail.com

martilloatomico@gmail.com Titulo: OPERACIONES CON POLINOMIOS (Reducción de términos semejantes, suma y resta de polinomios, signos de agrupación, multiplicación y división de polinomios) Año escolar: 2do: año de bachillerato Autor:

Más detalles

Qué son los monomios?

Qué son los monomios? Qué son los monomios? Recordemos qué es una expresión algebraica. Definición Una expresión algebraica es aquella en la que se utilizan letras, números y signos de operaciones. Si se observan las siguientes

Más detalles

INSTITUTO VALLADOLID PREPARATORIA página 9

INSTITUTO VALLADOLID PREPARATORIA página 9 INSTITUTO VALLADOLID PREPARATORIA página 9 página 10 FACTORIZACIÓN CONCEPTO Para entender el concepto teórico de este tema, es necesario recordar lo que se mencionó en la página referente al nombre que

Más detalles

. Definición: Dos o más términos son semejantes cuando tienen las mismas letras y afectadas por el mismo exponente.

. Definición: Dos o más términos son semejantes cuando tienen las mismas letras y afectadas por el mismo exponente. Ejercicios Resueltos del Algebra de Baldor. Consultado en la siguiente dirección electrónica http://www.quizma.cl/matematicas/recursos/algebradebaldor/index.htm. Definición: Dos o más términos son semejantes

Más detalles

Programa de Algebra Superior Caracterización de la asignatura: Esta materia se agregó al plan de estudios de las ingenierías como reforzamiento de

Programa de Algebra Superior Caracterización de la asignatura: Esta materia se agregó al plan de estudios de las ingenierías como reforzamiento de Programa de Algebra Superior Caracterización de la asignatura: Esta materia se agregó al plan de estudios de las ingenierías como reforzamiento de las bases matemáticas para mejorar el aprendizaje de los

Más detalles

CONCEPTOS ALGEBRAICOS BASICOS

CONCEPTOS ALGEBRAICOS BASICOS CONCEPTOS ALGEBRAICOS BASICOS OBJETIVOS: 1.- Expresar relaciones numéricas mediante símbolos numéricos y literales. 2.- Reconocer las expresiones algebraicas y sus elementos. 3.- Reducir y evaluar expresiones

Más detalles

CONTENIDO: Operaciones algebraicas con polinomios. División sintética. Operaciones con exponentes racionales.

CONTENIDO: Operaciones algebraicas con polinomios. División sintética. Operaciones con exponentes racionales. CONTENIDO: Operaciones algebraicas con polinomios. División sintética. Operaciones con exponentes racionales. Definir los conceptos básicos del Algebra Elemental. Conocer los procedimientos para sumar,

Más detalles

Material N 15 GUÍA TEÓRICO PRÁCTICA Nº 12

Material N 15 GUÍA TEÓRICO PRÁCTICA Nº 12 C u r s o : Matemática Material N 5 GUÍA TEÓRICO PRÁCTICA Nº UNIDAD: ÁLGEBRA Y FUNCIONES ÁLGEBRA DE POLINOMIOS EVALUACIÓN DE EXPRESIONES ALGEBRAICAS Evaluar una epresión algebraica consiste en sustituir

Más detalles

Biblioteca Virtual Ejercicios Resueltos

Biblioteca Virtual Ejercicios Resueltos EJERCICIO 13 13 V a l o r n u m é r i c o Valor numérico de expresiones compuestas P r o c e d i m i e n t o 1. Se reemplaza cada letra por su valor numérico 2. Se efectúan las operaciones indicadas Hallar

Más detalles

UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS

UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS Unidad 6: Polinomios con coeficientes enteros. Al final deberás haber aprendido... Expresar algebraicamente enunciados sencillos. Extraer enunciados razonables

Más detalles

Colegio Hermanos Carrrera. Departamento de Matemática Prof. Roberto Medina

Colegio Hermanos Carrrera. Departamento de Matemática Prof. Roberto Medina Colegio Hermanos Carrrera Departamento de Matemática Prof. Roberto Medina Unidad 2 Objetivos: - Conceptos algebraicos básicos - Valoración de expresiones algebraicas - Reducción de términos semejantes

Más detalles

OPERACIONES CON POLINOMIOS

OPERACIONES CON POLINOMIOS OPERACIONES CON POLINOMIOS. SUMA ALGEBRAICA DE POLINOMIOS. En la práctica para sumar dos o más polinomios suelen colocarse unos deajo de los otros, de tal modo que los términos semejantes queden en columna,

Más detalles

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2 SISTEMA DE ACCESO COMÚN A LAS CARRERAS DE INGENIERÍA DE LA UNaM III. UNIDAD : FUNCIONES POLINÓMICAS III..1 POLINOMIOS La expresión 5x + 7 x + 4x 1 recibe el nombre de polinomio en la variable x. Es de

Más detalles

Matemáticas. para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul

Matemáticas. para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul Matemáticas para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul Curso Propedéutico de Matemáticas Unidad IV Secciones 6 y 8) 0.6 Operaciones con epresiones algebraicas. 0.8 fracciones

Más detalles

Polinomios y Ecuaciones

Polinomios y Ecuaciones Ejercicios de Cálculo 0 Prof. María D. Ferrer G. Polinomios y Ecuaciones.. Polinomios: Un polinomio o función polinómica es una epresión de la forma: n n n P a a a a a a = n + n + n + + + + 0 () Los números

Más detalles

Matemáticas I (Álgebra) Manual de bachillerato. Primera Edición, 2009 Compilación y Asesoría Pedagógica Erika Alejandra López Estrada

Matemáticas I (Álgebra) Manual de bachillerato. Primera Edición, 2009 Compilación y Asesoría Pedagógica Erika Alejandra López Estrada Matemáticas I (Álgebra) Manual de bachillerato Primera Edición, 2009 Compilación y Asesoría Pedagógica Erika Alejandra López Estrada Coordinador editorial Alan Santacruz Farfán Revisión Alejandro Vázquez

Más detalles

MANEJO DE EXPRESIONES ALGEBRAICAS. Al finalizar el capítulo el alumno manejará expresiones algebraicas para la solución de problemas

MANEJO DE EXPRESIONES ALGEBRAICAS. Al finalizar el capítulo el alumno manejará expresiones algebraicas para la solución de problemas MANEJO DE EXPRESIONES ALGEBRAICAS Al finalizar el capítulo el alumno manejará expresiones algebraicas para la solución de problemas 34 Reforma académica 003 MAPA CURRICULAR Matemáticas I Aritmética y Álgebra

Más detalles

Si los términos no son semejantes no se pueden reducir a un total. Cuando los elementos son de la misma especie se dice que son semejantes.

Si los términos no son semejantes no se pueden reducir a un total. Cuando los elementos son de la misma especie se dice que son semejantes. Operaciones básicas con Expresiones Algebraicas (adición, sustracción, multiplicación y división) y redacta un informe Teórico práctico donde describas el procedimiento para realizar cada operación y al

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas UNIDAD Polinomios y fracciones algebraicas U n polinomio es una expresión algebraica en la que las letras y los números están sometidos a las operaciones de sumar, restar y multiplicar. Los polinomios,

Más detalles

DEL LENGUAJE DE LOS NÚMEROS AL LEGUAJE ALGEBRAICO.

DEL LENGUAJE DE LOS NÚMEROS AL LEGUAJE ALGEBRAICO. DEL LENGUAJE DE LOS NÚMEROS AL LEGUAJE ALGEBRAICO. En ocasiones, en matemáticas, necesitamos operar con números desconocidos. Para ello, se toman letras para representar esas cantidades desconocidas o

Más detalles

Las expresiones algebraicas se clasifican en racionales e irracionales.

Las expresiones algebraicas se clasifican en racionales e irracionales. 1. 1.1 Epresiones algebraicas 1.1 Epresión algebraica. En matemáticas una epresión algebraica es un conjunto de letras y números, ligados por los signos de adición, sustracción, multiplicación, división,

Más detalles

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x

Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Los polinomios Los polinomios Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Elementos de un polinomio Los términos: cada

Más detalles

Operaciones Fundamentales del Álgebra. Operaciones con Fracciones Algebraicas.. E xponentes y Radicales 99. Ecuaciones Lineales o de Primer Grado

Operaciones Fundamentales del Álgebra. Operaciones con Fracciones Algebraicas.. E xponentes y Radicales 99. Ecuaciones Lineales o de Primer Grado ÍNDICE COMPETENCIA Operaciones Fundamentales del Álgebra 5 COMPETENCIA Operaciones con Fracciones Algebraicas.. 7 COMPETENCIA E ponentes y Radicales 99 COMPETENCIA Ecuaciones Lineales o de Primer Grado

Más detalles

Área: Matemática ÁLGEBRA

Área: Matemática ÁLGEBRA Área: Matemática ÁLGEBRA Prof. HENRY AYTE MORALES FICHA DE TRABAJO RECUPERACIÓN 1ro SEC A, B y C I. TEORÍA DE EXPONENTES 1. DEFINICIÓN Es un conjunto de fórmulas que relaciona a los exponentes de las expresiones

Más detalles

Nivel Medio I-104 Provincia del Neuquén Patagonia Argentina

Nivel Medio I-104 Provincia del Neuquén Patagonia Argentina Nivel Medio I-104 Provincia del Neuquén Patagonia Argentina www.faena.edu.ar info@faena.edu.ar TERCER BLOQUE MATEMATICA Está permitida la reproducción total o parcial de parte de cualquier persona o institución

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman V A R I A B L ES, I N C Ó G N I T A S o

Más detalles

PROBLEMAS RESUELTOS. CASO I cuando todos los términos de un polinomio tienen un factor común. Algebra Baldor

PROBLEMAS RESUELTOS. CASO I cuando todos los términos de un polinomio tienen un factor común. Algebra Baldor PROBLEMAS RESUELTOS CASO I cuando todos los términos de un polinomio tienen un factor común CASO II factor comun por agrupación de terminos CASO III trinomio cuadrado perfecto CASO IV Diferencia de cuadrados

Más detalles

Profesoresdematemáticaswww.institu teofmathematics.webs.comprofesores dematemáticaswww.instituteofmathe. matics.webs.comprofesoresdematemá

Profesoresdematemáticaswww.institu teofmathematics.webs.comprofesores dematemáticaswww.instituteofmathe. matics.webs.comprofesoresdematemá Profesoresdematemáticaswww.institu teofmathematics.webs.comprofesores dematemáticaswww.instituteofmathe Matemáticas IV matics.webs.comprofesoresdematemá ENP ticaswww.instituteofmathematics.web s.comprofesoresdematematicaswww.i

Más detalles

14 Expresiones algebraicas. Polinomios

14 Expresiones algebraicas. Polinomios PARADA TeÓRICA 14 Expresiones algebraicas. Polinomios Una expresión algebraica es una combinación cualquiera y finita de números, de letras, o de números, letras, ligados entre sí con la adición, sustracción,

Más detalles

EL GRADO Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO

EL GRADO Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO RECONOCER OBJETIVO EL GRADO Y LOS ELEMENTOS QUE ORMAN UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma algebraica de monomios, que son los términos del polinomio.

Más detalles

TEMA 2 POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 2 POLINOMIOS Y FRACCIONES ALGEBRAICAS Matemáticas B 4º E.S.O. Tema : Polinomios y fracciones algebraicas. 1 TEMA POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS 4º.1.1 COCIENTE DE MONOMIOS 4º El cociente de un monomio entre otro

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas 829566 _ 0249-008.qxd 27/6/08 09:21 Página 27 Polinomios y fracciones algebraicas INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de

Más detalles

Polinomios y Fracciones Algebraicas

Polinomios y Fracciones Algebraicas Tema 4 Polinomios y Fracciones Algebraicas En general, a lo largo de este tema trabajaremos con el conjunto de los números reales y, en casos concretos nos referiremos al conjunto de los números complejos.

Más detalles

MATERIAL DIDACTICO DE MATEMÁTICAS

MATERIAL DIDACTICO DE MATEMÁTICAS MATERIAL DIDACTICO DE MATEMÁTICAS Matemáticas 1 INSTITUTO TECNOLÓGICO DE ROQUE MATERIAL DIDACTICO DE MATEMÁTICAS DEPARTAMENTO CIENCIAS BÁSICAS ELABORARON: ERIKA RAMOS OJEDA RAQUEL ALDACO SEGOVIANO JORGE

Más detalles

4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN

4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN 4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN Bloque 2. POLINOMIOS. (En el libro Tema 3, página 47) 1. Definiciones. 2. Valor numérico de una expresión algebraica. 3. Operaciones con polinomios: 3.1. Suma,

Más detalles

INSTITUTO VALLADOLID PREPARATORIA página 57

INSTITUTO VALLADOLID PREPARATORIA página 57 INSTITUTO VALLADOLID PREPARATORIA página 57 página 58 RESTA DE FRACCIONES RESTA La resta de fracciones está basada, por ser el inverso de la operación suma, en las mismas reglas y leyes de la suma, es

Más detalles

POLINOMIOS. División. Regla de Ruffini.

POLINOMIOS. División. Regla de Ruffini. POLINOMIOS. División. Regla de Ruffini. Recuerda: Un monomio en x es una expresión algebraica de la forma a x tal que a es un número real y n es un número natural. El real a se llama coeficiente y n se

Más detalles

IES MARIA INMACULADA MATEMÁTICAS 2º E.S.O. Curso 2010-2011 TEMA : LENGUAJE ALGEBRÁICO

IES MARIA INMACULADA MATEMÁTICAS 2º E.S.O. Curso 2010-2011 TEMA : LENGUAJE ALGEBRÁICO IES MARIA INMACULADA MATEMÁTICAS º E.S.O. Curso 010-011 GUIÓN DEL TEMA 1. Lenguaje numérico y lenguaje algebraico.. Epresión algebraica.. Valor numérico de una epresión algebraica.. Monomios. 5. Grado

Más detalles

5 Expresiones algebraicas

5 Expresiones algebraicas 8948 _ 04-008.qxd /9/07 :0 Página 9 Expresiones algebraicas INTRODUCCIÓN RESUMEN DE LA UNIDAD El lenguaje algebraico sirve para expresar situaciones relacionadas con la vida cotidiana, utilizando letras

Más detalles

Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009

Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009 Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios Dra. Noemí L. Ruiz Limardo 2009 Objetivos de la Lección Al finalizar esta lección los estudiantes: Identificarán, de una lista de expresiones

Más detalles

Operaciones con polinomios

Operaciones con polinomios Operaciones con polinomios Los polinomios son una generalización de nuestro sistema de numeración. Cuando escribimos un número, por ejemplo, 2 354, queremos decir: 2 354 = 2 000 + 300 + 50 + 4 = 2)1 000)

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS

OBJETIVOS CONTENIDOS PROCEDIMIENTOS 82652 _ 0275-0286.qxd 27/4/07 1:20 Página 275 Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender

Más detalles

Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo

Polinomios: Definición: Se llama polinomio en x de grado n a una expresión del tipo Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo P (x) = a 0 x n + a 1 x n 1 +... + a n Donde n N (número natural) ; a 0, a 1, a 2,..., a n son coeficientes reales

Más detalles

UNIDAD I NÚMEROS REALES

UNIDAD I NÚMEROS REALES UNIDAD I NÚMEROS REALES Los números que se utilizan en el álgebra son los números reales. Hay un número real en cada punto de la recta numérica. Los números reales se dividen en números racionales y números

Más detalles

Recuerdas qué es? Expresión algebraica. Es una combinación de números y letras relacionados mediante operaciones aritméticas.

Recuerdas qué es? Expresión algebraica. Es una combinación de números y letras relacionados mediante operaciones aritméticas. Recuerdas qué es? Expresión algebraica Es una combinación de números y letras relacionados mediante operaciones aritméticas. Propiedad distributiva de la multiplicación respecto de la suma Si a, b y c

Más detalles

INSTITUTO UNIVERSITARIO DE TECNOLOGÍA VENEZUELA CURSO PROPEDÉUTICO TALLER DE MATEMÁTICA

INSTITUTO UNIVERSITARIO DE TECNOLOGÍA VENEZUELA CURSO PROPEDÉUTICO TALLER DE MATEMÁTICA INSTITUTO UNIVERSITARIO DE TECNOLOGÍA VENEZUELA CURSO PROPEDÉUTICO TALLER DE MATEMÁTICA CARACAS, MARZO DE 2013 ESTUDIO DEL SISTEMA DECIMAL CONTENIDO Base del sistema decimal Nomenclatura Ordenes Subordenes

Más detalles

UNEFA CURSO INTEGRAL DE NIVELACIÓN UNIVERSITARIA (CINU)- MATEMÁTICA Página 1

UNEFA CURSO INTEGRAL DE NIVELACIÓN UNIVERSITARIA (CINU)- MATEMÁTICA Página 1 Unidad 1: Epresiones Algebraicas UNEFA CURSO INTEGRAL DE NIVELACIÓN UNIVERSITARIA (CINU)- MATEMÁTICA Página 1 UNEFA CURSO INTEGRAL DE NIVELACIÓN UNIVERSITARIA (CINU)- MATEMÁTICA Página Matemática Unidad

Más detalles

INSTITUTO TECNOLÓGICO DE CHETUMAL

INSTITUTO TECNOLÓGICO DE CHETUMAL INSTITUTO TECNOLÓGICO DE CHETUMAL CUADERNILLO DEL CURSO DE NIVELACIÓN 014 PARA LAS CARRERAS DE: INGENIERÍA CIVIL INGENIERÍA ELÉCTIRCA INGENIERÍA EN SISTEMAS COMPUTACIONALES INGENIERÍA EN TECNOLOGIAS DE

Más detalles

(a+b) (a b)=a 2 b 2 OBJETIVOS CONTENIDOS PROCEDIMIENTOS

(a+b) (a b)=a 2 b 2 OBJETIVOS CONTENIDOS PROCEDIMIENTOS Polinomios INTRODUCCIÓN Son múltiples los contextos en los que aparecen los polinomios: fórmulas económicas, químicas, físicas, de ahí la importancia de comprender el concepto de polinomio y otros asociados

Más detalles

BOLETIN Nº 4 MATEMÁTICAS 3º ESO Operaciones con radicales

BOLETIN Nº 4 MATEMÁTICAS 3º ESO Operaciones con radicales Radicales " Raíz: se llama raíz de un número o de una expresión algebraica a todo número o expresión algebraica que elevada a una potencia "n"; reproduce la expresión dada. " Elementos de la raíz. - Radical:

Más detalles

Cómo desarrollar y factorizar expresiones algebraicas?

Cómo desarrollar y factorizar expresiones algebraicas? 1 Cómo desarrollar y factorizar expresiones algebraicas? Prof. Jean-Pierre Marcaillou OBJETIVOS: La calculadora CASIO ClassPad 330 dispone de los comandos [expand], [factor], [rfactor], [factorout] y [collect]

Más detalles

CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA

CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA http:/// CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA DESARROLLA EN FORMA RESUMIDA CADA UNIDAD CON: I. GUIONES DE CONFERENCIAS II. FICHAS DE ESTUDIO III. LABORATORIOS DE EJERCICIOS Trata las unidades siguientes:

Más detalles

SERIE INTRODUCTORIA. REPASO DE ALGEBRA.

SERIE INTRODUCTORIA. REPASO DE ALGEBRA. SERIE INTRODUCTORIA. REPASO DE ALGEBRA. 1.- REDUCCION DE TÉRMINOS SEMEJANTES. Recuerde que los términos semejantes son aquellos que tienen las mismas letras con los mismos exponentes. Ejemplos: *7m; 5m

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP. Universidad de Santiago de Chile. Polinomios

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP. Universidad de Santiago de Chile. Polinomios Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP Universidad de Santiago de Chile Polinomios Definición: P es un polinomio en el conjunto de los números reales si y sólo si P es una función de

Más detalles

3 POLINOMIOS Y FRACCIONES ALGEBRAICAS

3 POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS PARA EMPEZAR Un cuadrado tiene 5 centímetros de lado. Escribe la epresión algebraica que da el área cuando el lado aumenta centímetros. A ( 5) Señala cuáles de las siguientes

Más detalles

INSTITUTO VALLADOLID PREPARATORIA página 37

INSTITUTO VALLADOLID PREPARATORIA página 37 INSTITUTO VALLADOLID PREPARATORIA página 37 página 38 SUMA DE FRACCIONES CONCEPTO Las cuatro operaciones fundamentales, suma, resta, multiplicación y división, con fracciones algebraicas se realizan bajo

Más detalles

Operaciones combinadas con polinomios

Operaciones combinadas con polinomios ExMa-MA05. Operaciones combinadas W. Poveda Operaciones combinadas con polinomios Objetivos. Aplicar las leyes de potencias.. Aplicar las propiedades de la suma y el producto.. Aplicar los productos notables

Más detalles

resolución de problemas en cuanto a originalidad, ingenio y versatilidad de los métodos usados.

resolución de problemas en cuanto a originalidad, ingenio y versatilidad de los métodos usados. i PRESENTACIÓN Este teto tiene la intención de asistir como un importante material de apoyo en el área de matemática a los estudiantes que participan en el curso propedéutico que dicta la Facultad de Agronomía

Más detalles

1. División de polinomios por monomios

1. División de polinomios por monomios 1. División de polinomios por monomios El cociente de dos monomios (si es posible) es igual a otro monomio que tiene: como coeficiente, el cociente de los coeficientes; como parte literal, las letras que

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas 0 Polinomios y fracciones algebraicas En esta Unidad aprenderás a: d Trabajar con epresiones polinómicas. d Factorizar polinomios. d Operar con fracciones algebraicas. d Descomponer una fracción algebraica

Más detalles

Profr. Efraín Soto Apolinar. Factorización

Profr. Efraín Soto Apolinar. Factorización Factorización La factorización es la otra parte de la historia de los productos notables. Esto es, ambas cosas se refieren a las mismas fórmulas, pero en los productos notables se nos daba una operación

Más detalles

45 EJERCICIOS de POLINOMIOS 4º ESO opc. B

45 EJERCICIOS de POLINOMIOS 4º ESO opc. B EJERCICIOS de POLINOMIOS º ESO opc. B 1. Calcular el valor numérico del polinomio P(x) para el valor de x indicado: a) P(x)x +1, para x1 b) P(x)x +1, para x-1 c) P(x)x +x+, para x d) P(x)-x -x-, para x-

Más detalles

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos MATEMÁTICAS BÁSICAS DESIGUALDADES DESIGUALDADES DE PRIMER GRADO EN UNA VARIABLE La epresión a b significa que "a" no es igual a "b ". Según los valores particulares de a de b, puede tenerse a > b, que

Más detalles

DESARROLLO D) 4. para a = 1 y b = 2 (a 2 + b 2 )(2a 3b 2 ) es:

DESARROLLO D) 4. para a = 1 y b = 2 (a 2 + b 2 )(2a 3b 2 ) es: ENCUENTRO # 10 TEMA:Operaciones con polinomios CONTENIDOS: 1. Multiplicación de polinomios. 2. Productos notables. DESARROLLO Ejercicio Reto x 2 1. Al racionalizar el denominador de la fracción 3 + se

Más detalles

A L G E B R A. Ejercicio Signo C. numérico F. literal Grado 5,9a 2 b 3 c menos 5,9 a 2 b 3 c 2+3+1=6

A L G E B R A. Ejercicio Signo C. numérico F. literal Grado 5,9a 2 b 3 c menos 5,9 a 2 b 3 c 2+3+1=6 CONCEPTOS BÁSICOS: A L G E B R A. Término algebraico: Un término algebraico es el producto de una o más variables y una constante literal o numérica. Ejemplos: x y ; ; m En todo término algebraico podemos

Más detalles

Aquí van cada uno de los casos de factorización que conviene tener presente:

Aquí van cada uno de los casos de factorización que conviene tener presente: Se puede decir que la factorización algebraica es el proceso inverso de La multiplicación del mismo tipo. Existen diversos tipos de factorización, cuyas reglas y algoritmos dependen de la forma de la expresión.

Más detalles

PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas

PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas PRODUCTOS NOTABLES: son aquellas multiplicaciones algebraicas que se resuelven siguiendo Reglas y Fórmulas específicas para cada caso y cuyo resultado puede ser escrito por simple inspección, es decir

Más detalles

REGLA DE RUFFINI. FACTORIZACIÓN DE POLINOMIOS

REGLA DE RUFFINI. FACTORIZACIÓN DE POLINOMIOS REGLA DE RUFFINI. FACTORIZACIÓN DE POLINOMIOS Si en una división de polinomios el divisor es de la forma (x - a) se puede aplicar la regla de Ruffini para obtener el cociente y el resto de la división.

Más detalles

Multiplicación de Polinomios. Ejercicios de multiplicación de polinomios. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.

Multiplicación de Polinomios. Ejercicios de multiplicación de polinomios. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com. Multiplicación de Polinomios Ejercicios de multiplicación de polinomios www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 2007-2008 Contenido 1. Antecedentes 2 2. Multiplicación de monomios

Más detalles

Conectados con el pasado, proyectados hacia el futuro Plan Anual de Matemática III Año PAI VIIIGrado

Conectados con el pasado, proyectados hacia el futuro Plan Anual de Matemática III Año PAI VIIIGrado Actualizado en febrero del 2013 Conectados con el pasado, proyectados hacia el futuro Plan Anual de Matemática III Año PAI VIIIGrado CONTENIDOS OBJETIVOS ESPECÍFICOS HABILIDADES CRITERIOS DE EVALUACIÓN

Más detalles

Guía 4 Formalizando conceptos y procedimientos algebraicos

Guía 4 Formalizando conceptos y procedimientos algebraicos 1 Guía 4 Formalizando conceptos y procedimientos algebraicos Nombre Curso Capacidad Destreza Valor Actitud 1 Año Medio A B C D Resolver Problemas Analizar Colaboración Constancia Aprendizajes Esperados

Más detalles

Capítulo 4. Productos notables y factorización

Capítulo 4. Productos notables y factorización Capítulo 4 Productos notables y factorización Las siguientes fórmulas de multiplicación de expresiones algebraicas ayudan a factorizar muchas expresiones, sin embargo se debe aprender a reconocer cuál

Más detalles

UNIVERSIDAD DE LONDRES - PREPARATORIA CLAVE DE INCORPORACIÒN UNAM 1244

UNIVERSIDAD DE LONDRES - PREPARATORIA CLAVE DE INCORPORACIÒN UNAM 1244 UNIVERSIDAD DE LONDRES - PREPARATORIA CLAVE DE INCORPORACIÒN UNAM 1244 Guía para examen extraordinario de: MATEMÁTICAS IV Plan: 96 Clave: 1400 Año: 4º Ciclo escolar: 10-11 ACADEMIA DE CIENCIAS UNIDAD I.

Más detalles

Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-)

Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-) CÁLCULO MATEMÁTICO BÁSICO LOS NUMEROS ENTEROS Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-) Si un número aparece entre barras /5/, significa que su

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 2 Polinomios y fracciones algebraicas Elaborado por la Profesora Doctora

Más detalles

Temario de Matemáticas IV (1400)

Temario de Matemáticas IV (1400) UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO SECRETARÍA GENERAL DIRECCIÓN GENERAL DE INCORPORACIÓN Y REVALIDACIÓN DE ESTUDIOS Temario de Matemáticas IV (1400) Plan ENP - 1996 TEMARIO MATEMÁTICAS IV (1400) UNIDAD

Más detalles

1º) Siempre que se pueda, hay que sacar factor común: :a b ± a c ± a d ± = a (b ± c ± d ± ):

1º) Siempre que se pueda, hay que sacar factor común: :a b ± a c ± a d ± = a (b ± c ± d ± ): Pág. 1 de 7 FAC T O R I Z AC I Ó N D E P O L I N O M I O S Factorizar (o descomponer en factores) un polinomio consiste en sustituirlo por un producto indicado de otros de menor grado tales que si se multiplicasen

Más detalles

UNIDAD I OPERACIONES CON MONOMIOS Y POLINOMIOS. I.S.C. Alejandro de Fuentes Martínez

UNIDAD I OPERACIONES CON MONOMIOS Y POLINOMIOS. I.S.C. Alejandro de Fuentes Martínez UNIDAD I OPERACIONES CON MONOMIOS Y POLINOMIOS I.S.C. Alejandro de Fuentes Martínez 1 ESQUEMA ESQUEMA-RESUMEN RESUMEN DE LA UNIDAD Álgebra (Concepstos básicos) Suma Resta Multiplicación División OPERACIONES

Más detalles

Lenguaje Algebraico Ing. Gerardo Sarmiento

Lenguaje Algebraico Ing. Gerardo Sarmiento Agosto 2009 Unidad 1 LENGUAJE ALGEBRAICO 1.1.1 DEFINICION DE ALGEBRA 1.1.2 SIMBOLOS Y LENGUAJE 1.1.3 EXPRESIONES ALGEBRAICAS Lenguaje Común y Lenguaje Algebráico 1.1.4 NOTACION ALGEBRAICA Elementos de

Más detalles

a) Un número par I) 2n 1 b) Un número impar II) x, x 1 c) Un número y el que le sigue III) 3a d) El triple de un número IV) 2z x 6 b) e)

a) Un número par I) 2n 1 b) Un número impar II) x, x 1 c) Un número y el que le sigue III) 3a d) El triple de un número IV) 2z x 6 b) e) Polinomios El 6 de septiembre del 00 se celebró el gran Premio de Singapur, la 5.ª prueba del mundial de Fórmula. La carrera constaba de 6 vueltas a un circuito de 5 067 m de longitud. Fernando Alonso,

Más detalles

Números Reales y Fundamentos de Álgebra

Números Reales y Fundamentos de Álgebra CONARE Proyecto RAMA Números Reales y Fundamentos de Álgebra Master Pedro Díaz Navarro Temas de pre-cálculo Enero 2007 Master. Pedro Díaz Navarro 31 de julio de 2007 Índice 1. Los Números Reales 1 1.1.

Más detalles

José de Jesús Ángel Ángel, c 2010. Factorización

José de Jesús Ángel Ángel, c 2010. Factorización José de Jesús Ángel Ángel, c 2010. Factorización Contenido 1. Introducción 2 1.1. Notación.................................. 2 2. Factor común 4 2.1. Ejercicios: factor común......................... 4

Más detalles

Capitulo 4. Polinomios

Capitulo 4. Polinomios Capitulo 4. Polinomios Objetivo. El alumno usará y analizará los conceptos del álgebra de los polinomios y sus propiedades para obtener raíces. Contenido. 4.1 Definición de polinomio. Grado de un polinomio.

Más detalles

UNIDAD DE APRENDIZAJE IV

UNIDAD DE APRENDIZAJE IV UNIDAD DE APRENDIZAJE IV Saberes procedimentales 1. Interpreta y utiliza correctamente el lenguaje simbólico ara el manejo de expresiones algebraicas. 2. Identifica operaciones básicas con expresiones

Más detalles

1 Unidad II. Tópicos del algebra

1 Unidad II. Tópicos del algebra Unidad II. Tópicos del algebra. Expresiones algebraicas Una expresión algebraica es una expresión matemática abstracta como 5xy 4 z 2 + 2 x2 y 0 Cada expresión algebraica está constituida por elementos

Más detalles

Operatoria con Expresiones Algebraicas

Operatoria con Expresiones Algebraicas PreUnAB Clase # 5 Julio 2014 Expresiones Algebraicas Definición Se llama expresión algebraica a un conjunto de valores constantes (2. 3, 7, etc) y valores variables (x, a, y, etc), relacionados entre sí

Más detalles

DESARROLLO. a r a s = ar s

DESARROLLO. a r a s = ar s ENCUENTRO # 11 TEMA:Operaciones con polinomios CONTENIDOS: 1. División de polinomios. DESARROLLO Ejercicio Reto 1. El resultado de n 4 n 1 es: A) 1 B) 1 n 1 B)4 n 1 D) 4 E) 1 4 4 4 4 4 n 1 4 2. Si para

Más detalles

Factorización. Ejercicios de factorización. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx

Factorización. Ejercicios de factorización. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx Factorización Ejercicios de factorización www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 2007-2008 Contenido 1. Introducción 2 1.1. Notación...........................................

Más detalles

Capítulo 2 Números Reales

Capítulo 2 Números Reales Introducción Capítulo Números Reales La idea de número aparece en la historia del hombre ligada a la necesidad de contar objetos, animales, etc. Para lograr este objetivo, usaron los dedos, guijarros,

Más detalles

La suma se realiza miembro a miembro. La suma de polinomios goza de las mismas propiedades que la suma de números. Ejemplo:

La suma se realiza miembro a miembro. La suma de polinomios goza de las mismas propiedades que la suma de números. Ejemplo: Tema 4. Polinomios 1. Definición Un polinomio es una expresión hecha con constantes, variables y exponentes, que están combinados. Los exponentes sólo pueden ser 0, 1, 2, 3,... etc. No puede tener un número

Más detalles

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA CASOS DE FACTORIZACIÓN El futuro tiene muchos nombres. Para los débiles es lo inalcanzable. Para los temerosos, lo desconocido.

Más detalles

Coeficientes 43 X = 43 X partes literales - 7 a 3 = - 7 a 3

Coeficientes 43 X = 43 X partes literales - 7 a 3 = - 7 a 3 APUNTES Y EJERCICIOS DEL TEMA 3 1-T 3--2ºESO EXPRESIONES ALGEBRAICAS: Son combinaciones de n os y letras unidos con operaciones matemáticas (aritméticas), que generalmente suelen ser sumas, restas, multiplicaciones

Más detalles

GUÍA Nº 02 GRADO: 8 ESTUDIANTE: PERÍODO:2 DURACIÓN:

GUÍA Nº 02 GRADO: 8 ESTUDIANTE: PERÍODO:2 DURACIÓN: AREA MATEMATICAS PROFESORA: Eblin Martínez M. GUÍA Nº 02 GRADO: 8 ESTUDIANTE: PERÍODO:2 DURACIÓN: 24 horas LOGRO: Identifico y realizo operaciones con expresiones algebraicas. INDICADORES DE LOGRO: Reconozco

Más detalles
Sitemap